DOI QR코드

DOI QR Code

Catalytic Conversion of Cellulose to Cellulose Acetate Propionate (CAP) Over SO42-/ZrO2 Solid Acid Catalyst

  • Leng, Yixin (School of petrochemical engineering, Changzhou University) ;
  • Zhang, Yun (School of petrochemical engineering, Changzhou University) ;
  • Huang, Chunxiang (School of petrochemical engineering, Changzhou University) ;
  • Liu, Xiaocheng (School of petrochemical engineering, Changzhou University) ;
  • Wu, Yuzhen (School of petrochemical engineering, Changzhou University)
  • 투고 : 2012.12.11
  • 심사 : 2013.01.22
  • 발행 : 2013.04.20

초록

The solid super acid catalyst $SO{_4}^{2-}$/$ZrO_2$ was prepared by impregnation method using $ZrO_2$ as the catalyst support. Catalyst forming was taken into consideration in order to separate catalyst from the mixture of cellulose acetate propionate (CAP). $Al_2O_3$ and sesbania gum powder were selected as binding agent and auxiliary agent respectively. The catalytic properties were evaluated through esterification of cellulose with acetic anhydride, propionic anhydride and characterized by XRD, FTIR and $NH_3$-TPD. In this paper, the effects of concentration of $H_2SO_4$ impregnated, calcination temperature, esterification temperature and esterification time on the yield, acyl content and viscosity of CAP were investigated. The results showed that $SO{_4}^{2-}/ZrO_2$ successfully catalyzed CAP synthesis over catalysts impregnated in 0.75 mol/L $H_2SO_4$ and calcined at $500^{\circ}C$. The yield, acetyl content and propionyl content of CAP reached the maximum value of 105.3%, 29.9% and 25.8% reacted at $50^{\circ}C$ for 8 h.

키워드

참고문헌

  1. Jeon, G. W.; An, J. E.; Jeong, Y. G. Composites: Part B 2012, 43, 3412. https://doi.org/10.1016/j.compositesb.2012.01.023
  2. Scott, G. Polym. Deg. Stab. 2000, 68, 1. https://doi.org/10.1016/S0141-3910(99)00182-2
  3. Park, H. M.; Liang, X. M.; Mohanty, A. K.; Misra, M.; Drzal, L. T. Macromolecules 2004, 37, 9076. https://doi.org/10.1021/ma048958s
  4. Mohanty, A. K.; Wibowo, A.; Misra, M.; Drzal, L. T. Polym. Eng. Sci. 2003, 43, 1151. https://doi.org/10.1002/pen.10097
  5. Gedon, S.; Fengl, R. In Krik-Othmer Encyclopedia of Chemical Technology; Wiley: New York, 1993; p 496.
  6. Sivaprakasam, S.; Saravanan, C. G. Energ. Fuel. 2007, 21, 2998. https://doi.org/10.1021/ef060516p
  7. Georgogianni, K. G.; Kontominas, M. G.; Pomonis, P. J.; Avlonitis, D.; Gergis, V. Fuel. Process. Technol. 2008, 89, 503. https://doi.org/10.1016/j.fuproc.2007.10.004
  8. Ataya, F.; Dube, M. A.; Ternan, M. Energ. Fuel. 2008, 21, 2450.
  9. Yan, H. P.; Yang, Y.; Xiang, X.; Hu, C. W. Catal. Commun. 2009, 10, 1558. https://doi.org/10.1016/j.catcom.2009.04.020
  10. Su, Q.; Zhang, Q.; Xu, G. H. Fuel. Process. Technol. 2009, 90, 1002. https://doi.org/10.1016/j.fuproc.2009.03.007
  11. Jiang, K. H.; Tong, D. M.; Tang, J. Q. Appl. Catal. A-gen. 2010, 389, 46. https://doi.org/10.1016/j.apcata.2010.08.062
  12. Hino, M.; Kurashige, M. Thermochim. Acta 2006, 441, 35. https://doi.org/10.1016/j.tca.2005.11.042
  13. Wang, B.; Zhu, J. P.; Ma, H. Z. J. Hazard. Mater. 2009, 164, 256. https://doi.org/10.1016/j.jhazmat.2008.08.003
  14. D817-96. Standard Test Methods of Testing Cellulose Acetate Propionate and Cellulose Acetate Butyrates [S].
  15. Su, W. Y.; Chen, Y. L.; Fu, X. Z.; Wei, K. M. Chinese J. Catal. 2001, 22, 175.
  16. Zhang, C.; Liu, T.; Wang, H. J.; Wang, F.; Pan, X. Y. Chem. Eng. J. 2011, 174, 236. https://doi.org/10.1016/j.cej.2011.09.010
  17. Cai, Y. S.; Tong, D. M.; Wu, X.; Jiang, K. H.; Hu, C. W. Chin. J. Chem. Res. Appl. 2008, 20, 996.
  18. Hino, M.; Aratab, K. J. Chem. Soc. 1988, 18, 1259.
  19. Martinez, A.; Prieto, G.; Arribas, M. A.; Concepción, P.; Sanchez- Royo, J. F. J. Catal. 2007, 248, 288. https://doi.org/10.1016/j.jcat.2007.03.022
  20. Schoonheydt, R. A.; Lunsford, J. H. J. Catal. 1972, 26, 261. https://doi.org/10.1016/0021-9517(72)90058-9

피인용 문헌

  1. for conversion of cellulose into chemicals vol.6, pp.9, 2016, https://doi.org/10.1039/C5CY01711D
  2. Structure of the SO4 2−/TiO2 solid acid catalyst and its catalytic activity in cellulose acetylation vol.121, pp.2, 2017, https://doi.org/10.1007/s11144-017-1165-3
  3. Shaping of Metal–Organic Frameworks: From Fluid to Shaped Bodies and Robust Foams vol.138, pp.34, 2013, https://doi.org/10.1021/jacs.6b06959
  4. Mesoporous Polymer Loading Heteropolyacid Catalysts: One-Step Strategy To Manufacture High Value-Added Cellulose Acetate Propionate vol.7, pp.5, 2013, https://doi.org/10.1021/acssuschemeng.8b05627
  5. Reaction-Controlled Phase-Transfer Process of Polyoxometalate-Based Catalyst for Cellulose Esterification: A Molecular Dynamics Study vol.125, pp.46, 2013, https://doi.org/10.1021/acs.jpcc.1c05561