DOI QR코드

DOI QR Code

Kinetics of Methyl Green Fading in the Presence of TX-100, DTAB and SDS

  • Samiey, Babak (Department of Chemistry, Faculty of Science, Lorestan University) ;
  • Dalvand, Zeinab (Department of Chemistry, Faculty of Science, Lorestan University)
  • Received : 2013.01.14
  • Accepted : 2013.01.22
  • Published : 2013.04.20

Abstract

The rate constant of alkaline fading of methyl green ($ME^{2+}$) was measured in the presence of non ionic (TX-100), cationic (DTAB) and anionic (SDS) surfactants. $ME^{2+}$ hydrolyses and fades in neutral water and in this work we search the effects of surfactants on its fading rate. The rate of reaction showed remarkable dependence on the electrical charge of the used surfactants. It was observed that the reaction rate constant decreased in the presence of DTAB and SDS and increased in the presence of TX-100. Binding constants of $ME^{2+}$ to TX-100, DTAB and SDS and the related thermodynamic parameters were obtained by classical (or stoichiometric) model. The results show that binding of $ME^{2+}$ to TX-100 and DTAB are two-region and that of SDS is three-region. Also, the binding constants of $ME^{2+}$ to surfactant molecules in DTAB/TX-100 and SDS/TX-100 mixed solutions and their stoichiometric ratios were obtained.

Keywords

References

  1. Feng, J.; Zeng, Y.; Ma, C.; Cai, X.; Zhang, Q.; Tong, M.; Yu, B.; Xu, P. Appl. Environ. Microbiol. 2006, 72, 7390. https://doi.org/10.1128/AEM.01474-06
  2. Engberts, J. B. F. N. Pure & Appl. Chem. 1992, 64, 1653. https://doi.org/10.1351/pac199264111653
  3. Cui, L.; Liu, Z.; Hui, F.; Si, C. BioRes. 2011, 6, 3850.
  4. Chaudhuri, R. G.; Paria, S. J. Colloid Interface Sci. 2011, 354,563. https://doi.org/10.1016/j.jcis.2010.11.039
  5. Kostenbauder, H. B.; Jawad, M. J.; Po-lai Sung, M. S.; Digenis, B. S.; Digenis, G. A. J. Soc. Cosmet. Chem. 1971, 22, 83.
  6. Nowothnick, H.; Blum, J.; Schomacker, R. Angew. Chem. Int. Ed. 2011, 50, 1918. https://doi.org/10.1002/anie.201005263
  7. Duxbury, D. F. Chem. Rev. 1993, 93, 381. https://doi.org/10.1021/cr00017a018
  8. Kurnick, N. B.; Mirsky, A. E. J. Gen. Physiol. 1950, 33, 265. https://doi.org/10.1085/jgp.33.3.265
  9. Geethakrishnan, T.; Palanisamy, P. K. American Journal of Applied Sciences 2005, 2, 1228. https://doi.org/10.3844/ajassp.2005.1228.1231
  10. Amis, E.; Overman R. T. J. Am. Chem. Soc. 1944, 66, 941. https://doi.org/10.1021/ja01234a031
  11. Samiey, B.; Alizadeh, K.; Moghaddasi, M. A.; Mousavi, M. F.; Alizadeh, N. Bul. Korean Chem. Soc. 2004, 25, 726. https://doi.org/10.5012/bkcs.2004.25.5.726
  12. Samiey, B.; Ashoori, F. Acta Chim. Slov. 2011, 58, 223.
  13. Samiey, B.; Rafi Dargahi, M. Reac. Kinet. Mech. Cat. 2010, 101,25. https://doi.org/10.1007/s11144-010-0208-9
  14. Huang, Z.; Gu, T. Colloids and Surfaces 1987, 28, 159. https://doi.org/10.1016/0166-6622(87)80181-6
  15. Parida, S. K.; Mishra, B. K. Colloids Surf. A 1998, 134, 249. https://doi.org/10.1016/S0927-7757(97)00114-3
  16. Ingold, C. K. Structure and Mechanism in Organic Chemistry; Bell, London, 1993.
  17. Hughes, E. D. Trans. Faraday Soc. 1941, 37, 603. https://doi.org/10.1039/tf9413700603
  18. Chotipong, A.; Scamehorn, J. F.; Rirksomboon, T.; Chavadej, S.;Supaphol, P. Colloids Surf. A 2007, 297, 163. https://doi.org/10.1016/j.colsurfa.2006.10.043
  19. Rabiller-Baudry, M.; Paugam, L.; Bégion, L.; Delaunay, D.; Fernandez-Cruz, M.; Phina-Ziebin, C.; Laviades-Garcia de Guadiana, C.; Chaufer, B. Desalination 2006, 191, 334. https://doi.org/10.1016/j.desal.2005.07.028
  20. Mandeep, M. S.; Shweta, S.; Singh, K.; Shaheen, A. J. Colloid Interface Sci. 2005, 286, 369. https://doi.org/10.1016/j.jcis.2004.12.044
  21. Soboleva, O. A.; Badun, G. A.; Summ, B. D. Colloid Journal 2006, 68, 228. https://doi.org/10.1134/S1061933X06020153
  22. Carnero Ruiz, C.; Aguiar, J. Langmuir 2000, 16, 7946. https://doi.org/10.1021/la000154s
  23. Cirin, D. M.; Posa, M. M.; Krstonoši , V. S.; Milanovi , M. L. Hem. Ind. 2012, 66, 21. https://doi.org/10.2298/HEMIND110612059C
  24. Piszkiewicz, D. J. J. Am. Chem. Soc. 1976, 98, 3053. https://doi.org/10.1021/ja00426a083
  25. Piszkiewicz, D. J. J. Am. Chem. Soc. 1977, 99, 7695. https://doi.org/10.1021/ja00465a046
  26. Piszkiewicz, D. J. J. Am. Chem. Soc. 1977, 99, 1550. https://doi.org/10.1021/ja00447a044
  27. Mahta, M.; Sundari, L. B. T.; Raiana, K. C. Int. J. Chem. Kinet. 1996, 28, 637.

Cited by

  1. Effects of Surfactants on the Rate of Chemical Reactions vol.2014, pp.2090-9071, 2014, https://doi.org/10.1155/2014/908476
  2. Thermodynamic Study on the Solubilization of p-Halogenated Phenol Derivatives in TTAB Solution vol.25, pp.1, 2014, https://doi.org/10.14478/ace.2013.1084
  3. Effects of NaCl and n-Butanol on the Solubilization of 4-Halogenated Phenols in Aqueous Solution of TTAB vol.58, pp.6, 2014, https://doi.org/10.5012/jkcs.2014.58.6.517
  4. Effect of Cationic/Anionic Mixed Micelles on Reaction Kinetics of Alkaline Hydrolysis of Crystal Violet vol.31, pp.3, 2019, https://doi.org/10.14233/ajchem.2019.21701
  5. TTAB 용액에서 p-브로모페놀의 가용화와 TTAB의 미셀화와의 상관관계에 대한 연구 vol.57, pp.6, 2013, https://doi.org/10.5012/jkcs.2013.57.6.665
  6. Evidence of formation of dye–surfactant ion pair micelle in the anionic surfactant mediated alkaline fading of methyl violet carbocation vol.53, pp.11, 2013, https://doi.org/10.1002/kin.21528