References
- Chen, X.; Shen, S.; Guo, L.; Mao, S. S. Chem. Rev. 2010, 110,6503. https://doi.org/10.1021/cr1001645
- Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Chem. Rev. 1995, 95, 69. https://doi.org/10.1021/cr00033a004
- Park, H.; Vecitis, C. D.; Choi, W.; Weres, O.; Hoffmann, M. R. J. Phys. Chem. C 2008, 112, 885. https://doi.org/10.1021/jp710723p
- Park, H.; Vecitis, C. D.; Hoffmann, M. R. J. Phys. Chem. A 2008,112, 7616. https://doi.org/10.1021/jp802807e
- Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Science 2001, 293, 269. https://doi.org/10.1126/science.1061051
- Khan, S. U. M.; Al-Shahry, M.; Ingler, J. W. B. Science 2002, 297,2243. https://doi.org/10.1126/science.1075035
- Park, Y.; Kim, W.; Park, H.; Tachikawa, T.; Majima, T.; Choi, W. Appl. Catal. B 2009, 91, 355. https://doi.org/10.1016/j.apcatb.2009.06.001
- Youngblood, W. J.; Lee, S.-H. A.; Maeda, K.; Mallouk, T. E. Accounts Chem. Res. 2009, 42, 1966. https://doi.org/10.1021/ar9002398
- Park, H.; Choi, W. Langmuir 2006, 22, 2906. https://doi.org/10.1021/la0526176
- Park, H.; Bae, E.; Lee, J.-J.; Park, J.; Choi, W. J. Phys. Chem. B 2006, 110, 8740. https://doi.org/10.1021/jp060397e
- Park, H.; Choi, W. J. Phys. Chem. B 2004, 108, 4086. https://doi.org/10.1021/jp036735i
- Park, H.; Choi, W.; Hoffmann, M. R. J. Mater. Chem. 2008, 18, 2379. https://doi.org/10.1039/b718759a
- Serp, P.; Figueiredo, J. L. Carbon Materials for Fatalysis; John Wiley & Sons: New Jersey, 2009.
- Dillon, A. C. Chem. Rev. 2010, 110, 6856. https://doi.org/10.1021/cr9003314
- Guldi, D. M.; Sgobba, V. Chem. Commun. 2011, 47, 606. https://doi.org/10.1039/c0cc02411b
- Leary, R.; Westwood, A. Carbon 2011, 49(3), 741. https://doi.org/10.1016/j.carbon.2010.10.010
- Zhang, L.-W.; Fu, H.-B.; Zhu, Y.-F. Adv. Func. Mater. 2008,18(15), 2180. https://doi.org/10.1002/adfm.200701478
- Gao, B.; Peng, C.; Chen, G. Z.; Puma, G. L. Appl. Catal. B 2008,85(1-2), 17. https://doi.org/10.1016/j.apcatb.2008.06.027
- Li, Z.; Gao, B.; Chen, G. Z.; Mokaya, R.; Sotiropoulos, S.; Puma, G. L. Appl. Catal. B 2011, 110, 50. https://doi.org/10.1016/j.apcatb.2011.08.023
- Jiang, G.; Lin, Z.; Zhu, L.; Ding, Y.; Tang, H. Carbon 2010,48(12), 3369. https://doi.org/10.1016/j.carbon.2010.05.029
- Yu, J.; Ma, T.; Liu, G.; Cheng, B. Dalton T. 2011, 40(25), 6635. https://doi.org/10.1039/c1dt10274e
- Yang, Y.; Qu, L.; Dai, L.; Kang, T.-S.; Durstock, M. Adv. Mater. 2007, 19(9), 1239. https://doi.org/10.1002/adma.200602181
- Ahmmad, B.; Kusumoto, Y.; Somekawa, S.; Ikeda, M. Catal. Commun. 2008, 9(6), 1410. https://doi.org/10.1016/j.catcom.2007.12.003
- Kongkanand, A.; Kamat, P. V. ACS Nano 2007, 1(1), 13. https://doi.org/10.1021/nn700036f
- Kongkanand, A.; Kamat, P. V. Nano Lett. 2007, 7(3), 676. https://doi.org/10.1021/nl0627238
- Park, Y.; Kang, S.-H.; Choi, W. Phys. Chem. Chem. Phys. 2011,13(20), 9425. https://doi.org/10.1039/c1cp20697d
- Ng, Y. H.; Lightcap, I. V.; Goodwin, K.; Matsumura, M.; Kamat, P. V. J. Phys. Chem. Lett. 2010, 1, 2222. https://doi.org/10.1021/jz100728z
- Lightcap, I. V.; Kosel, T. H.; Kamat, P. V. Nano Lett. 2010, 10(2),577. https://doi.org/10.1021/nl9035109
- Bell, N. J.; Ng, Y. H.; Du, A.; Coster, H.; Smith, S. C.; Amal, R. J. Phys. Chem. C 2011, 115, 6004. https://doi.org/10.1021/jp1113575
- Zhang, W. L.; Choi, H. J. Chem. Commun. 2011, 47(45), 12286. https://doi.org/10.1039/c1cc14983k
- Zhang, X.-Y.; Li, H.-P.; Cui, X.-L.; Lin, Y. J. Mater. Chem. 2010, 20(14), 2801. https://doi.org/10.1039/b917240h
- Xiang, Q.; Yu, J.; Jaroniec, M. Nanoscale 2011, 3(9), 3670. https://doi.org/10.1039/c1nr10610d
- Fan, W.; Lai, Q.; Zhang, Q.; Wang, Y. J. Phys. Chem. C 2011, 115(21), 10694. https://doi.org/10.1021/jp2008804
- Kim, H. C.; Moon, G.; Monllor-Satoca, D.; Park, Y.; Choi, W. J. Phys. Chem. C 2012, 116, 1535. https://doi.org/10.1021/jp209035e
- Colon, G.; Hidalgo, M. C.; Macias, M.; Navio, J. A. Appl. Catal. A 2004, 259(2), 235. https://doi.org/10.1016/j.apcata.2003.09.036
- El-Sheikh, A. H.; Al-Degs, Y. S.; Newman, A. P.; Lynch, D. E. Sep. Purif. Technol. 2007, 54(1), 117. https://doi.org/10.1016/j.seppur.2006.08.020
- Torimoto, T.; Okawa, Y.; Takeda, N.; Yoneyama, H. J. Photochem. Photobiol. A 1997, 103(1-2), 153. https://doi.org/10.1016/S1010-6030(96)04503-0
- Yu, Y.; Yu, J. C.; Chan, C. Y.; Che, Y. K.; Zhao, J. C.; Ding, L.; Ge, W. K.; Wong, P. K. Appl. Catal. B 2005, 61(1-2), 1. https://doi.org/10.1016/j.apcatb.2005.03.008
- Wang, W. D.; Serp, P.; Kalck, P.; Faria, J. L. Appl. Catal. B 2005,56(4), 305. https://doi.org/10.1016/j.apcatb.2004.09.018
- Vajda, K.; Mogyorosi, K.; Nemeth, Z.; Hernadi, K.; Forro, L.; Magrez, A.; Dombi, A. Phys. Status Solidi B 2011, 248(11), 2496. https://doi.org/10.1002/pssb.201100117
- Woan, K.; Pyrgiotakis, G.; Sigmund, W. Adv. Mater. 2009, 21(21),2233. https://doi.org/10.1002/adma.200802738
- Jafry, H. R.; Liga, M. V.; Li, Q.; Barron, A. R. New J. Chem. 2011,35(2), 400. https://doi.org/10.1039/c0nj00604a
- Dechakiatkrai, C.; Chen, J.; Lynam, C.; Phanichphant, S.; Wallace, G. G. J. Electrochem. Soc. 2007, 154(5), A407. https://doi.org/10.1149/1.2709498
- Yao, Y.; Li, G.; Ciston, S.; Lueptow, R. M.; Gray, K. A. Environ. Sci. Technol. 2008, 42(13), 4952. https://doi.org/10.1021/es800191n
- Kim, S.; Lim, S. K. Appl. Catal. B 2008, 84(1-2), 16. https://doi.org/10.1016/j.apcatb.2008.02.025
- Modestov, A.; Glezer, V.; Marjasin, I.; Lev, O. J. Phys. Chem. B 1997, 101, 4623. https://doi.org/10.1021/jp970132n
- Zhang, H.; Lv, X.; Li, Y.; Wang, Y.; Li, J. ACS Nano 2010, 4(1),380. https://doi.org/10.1021/nn901221k
- Zhang, Y.; Tang, Z.-R.; Fu, X.; Xu, Y.-J. ACS Nano 2010, 4(12),7303. https://doi.org/10.1021/nn1024219
- Akhavan, O.; Abdolahad, M.; Esfandiar, A.; Mohatashamifar, M. J. Phys. Chem. C 2010, 114, 12955. https://doi.org/10.1021/jp103472c
- Mao, C.-C.; Weng, H.-S. Chem. Eng. J. 2009, 155(3), 744. https://doi.org/10.1016/j.cej.2009.09.016
- Oh, W.-C.; Jung, A.-R.; Ko, W.-B. Mater. Sci. Eng. C 2009, 29(4),1338. https://doi.org/10.1016/j.msec.2008.10.034
- Zhang, Y.; Tang, Z.-R.; Fu, X.; Xu, Y.-J. ACS Nano 2011, 5(9),7426. https://doi.org/10.1021/nn202519j
- Hummers, W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80,1339. https://doi.org/10.1021/ja01539a017
- Yang, S. Y.; Choo, Y. S.; Kim, S.; Lim, S. K.; Lee, J.; Park, H. Appl. Catal. B 2012, 111-112, 317. https://doi.org/10.1016/j.apcatb.2011.10.014
- Ou, Y.; Lin, J.; Fang, S.; Liao, D. Chem. Phys. Lett. 2006, 429(1-3), 199. https://doi.org/10.1016/j.cplett.2006.08.024
- Dai, K.; Peng, T.; Ke, D.; Wei, B. Nanotechnology 2009, 20(12),125603. https://doi.org/10.1088/0957-4484/20/12/125603
- Choi, S. K.; Kim, S.; Lim, S. K.; Park, H. J. Phys. Chem. C 2010,114, 16475. https://doi.org/10.1021/jp104317x
- Zhou, K.; Zhu, Y. F.; Yang, X.; Jiang, X.; Li, C. New J. Chem. 2011, 35, 353. https://doi.org/10.1039/c0nj00623h
- Chang, S.-S. Mater. Sci. Eng. B 2004, B106, 56. https://doi.org/10.1016/j.mseb.2003.08.053
- Kim, Y.; Park, H. Energy Environ. Sci. 2011, 4, 685. https://doi.org/10.1039/c0ee00330a
- Kim, Y.; Park, H. Appl. Catal. B 2012, 125, 530. https://doi.org/10.1016/j.apcatb.2012.06.018
- Atik, M.; Zarzycki, J. J. Mater. Sci. Lett. 1994, 13, 1301. https://doi.org/10.1007/BF00270967
- Sener, S.; Erdemoglu, M.; Asilturk, M.; Sayilkan, H. Turk. J. Chem. 2005, 29, 487.
- Velasco, L. F.; Parra, J. B.; Ania, C. O. Appl. Surf. Sci. 2010, 256(17), 5254. https://doi.org/10.1016/j.apsusc.2009.12.113
- Ohtani, B. Chem. Lett. 2008, 37, 217.
- Comninellis, C. Electrochim. Acta 1994, 39, 1857. https://doi.org/10.1016/0013-4686(94)85175-1
Cited by
- SWNTs-catalyzed solar hydrogen production vol.3, pp.3, 2014, https://doi.org/10.5857/RCP.2014.3.3.56
- on Titanate Nanotubes Decorated with Nanoparticle Elemental Copper and CdS Quantum Dots vol.119, pp.19, 2015, https://doi.org/10.1021/jp511329d
- vol.9, pp.2, 2016, https://doi.org/10.1039/C5EE02575C
- Effect of Different Activated Carbon as Carrier on the Photocatalytic Activity of Ag-N-ZnO Photocatalyst for Methyl Orange Degradation under Visible Light Irradiation vol.7, pp.9, 2017, https://doi.org/10.3390/nano7090258
- vol.1032, pp.1742-6596, 2018, https://doi.org/10.1088/1742-6596/1032/1/012056
- Graphite-based N-TiO2 composites photocatalyst for removal of HCHO in water vol.56, pp.6, 2013, https://doi.org/10.1080/19443994.2014.951967
- Lignin-Based Composite Materials for Photocatalysis and Photovoltaics vol.376, pp.3, 2013, https://doi.org/10.1007/s41061-018-0198-z
- Photo-catalytic Study of Malachite Green Dye Degradation Using Rice Straw Extracted Activated Carbon Supported ZnO Nano-particles vol.9, pp.None, 2013, https://doi.org/10.2174/2210681209666190722121926
- High-Efficiency Photocatalytic Degradation of Tannic Acid Using TiO2 Heterojunction Catalysts vol.6, pp.43, 2013, https://doi.org/10.1021/acsomega.1c02500