DOI QR코드

DOI QR Code

Evaluating the Catalytic Effects of Carbon Materials on the Photocatalytic Reduction and Oxidation Reactions of TiO2

  • Khan, Gulzar (Department of Physics, Kyungpook National University) ;
  • Kim, Young Kwang (Department of Physics, Kyungpook National University) ;
  • Choi, Sung Kyu (Department of Physics, Kyungpook National University) ;
  • Han, Dong Suk (Chemical Engineering Program, Texas A&M University at Qatar) ;
  • Abdel-Wahab, Ahmed (Chemical Engineering Program, Texas A&M University at Qatar) ;
  • Park, Hyunwoong (School of Energy Engineering, Kyungpook National University)
  • Received : 2012.10.30
  • Accepted : 2013.01.21
  • Published : 2013.04.20

Abstract

$TiO_2$ composites with seven different carbon materials (activated carbons, graphite, carbon fibers, single-walled carbon nanotubes, multi-walled carbon nanotubes, graphene oxides, and reduced graphene oxides) that are virgin or treated with nitric acid are prepared through an evaporation method. The photocatalytic activities of the as-prepared samples are evaluated in terms of $H_2$ production from aqueous methanol solution (photo-catalytic reduction: PCR) and degradation of aqueous pollutants (phenol, methylene blue, and rhodamine B) (photocatalytic oxidation: PCO) under AM 1.5-light irradiation. Despite varying effects depending on the kinds of carbon materials and their surface treatment, composites typically show enhanced PCR activity with maximum 50 times higher $H_2$ production as compared to bare $TiO_2$. Conversely, the carbon-induced synergy effects on PCO activities are insignificant for all three substrates. Colorimetric quantification of hydroxyl radicals supports the absence of carbon effects. However, platinum deposition on the binary composites displays the enhanced effect on both PCR and PCO reactions. These differing effects of carbon materials on PCR and PCO reactions of $TiO_2$ are discussed in terms of physicochemical properties of carbon materials, coupling states of $TiO_2$/carbon composites, interfacial charge transfers. Various surface characterizations of composites (UV-Vis diffuse reflectance, SEM, FTIR, surface area, electrical conductivity, and photoluminescence) are performed to gain insight on their photocatalytic redox behaviors.

Keywords

References

  1. Chen, X.; Shen, S.; Guo, L.; Mao, S. S. Chem. Rev. 2010, 110,6503. https://doi.org/10.1021/cr1001645
  2. Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Chem. Rev. 1995, 95, 69. https://doi.org/10.1021/cr00033a004
  3. Park, H.; Vecitis, C. D.; Choi, W.; Weres, O.; Hoffmann, M. R. J. Phys. Chem. C 2008, 112, 885. https://doi.org/10.1021/jp710723p
  4. Park, H.; Vecitis, C. D.; Hoffmann, M. R. J. Phys. Chem. A 2008,112, 7616. https://doi.org/10.1021/jp802807e
  5. Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Science 2001, 293, 269. https://doi.org/10.1126/science.1061051
  6. Khan, S. U. M.; Al-Shahry, M.; Ingler, J. W. B. Science 2002, 297,2243. https://doi.org/10.1126/science.1075035
  7. Park, Y.; Kim, W.; Park, H.; Tachikawa, T.; Majima, T.; Choi, W. Appl. Catal. B 2009, 91, 355. https://doi.org/10.1016/j.apcatb.2009.06.001
  8. Youngblood, W. J.; Lee, S.-H. A.; Maeda, K.; Mallouk, T. E. Accounts Chem. Res. 2009, 42, 1966. https://doi.org/10.1021/ar9002398
  9. Park, H.; Choi, W. Langmuir 2006, 22, 2906. https://doi.org/10.1021/la0526176
  10. Park, H.; Bae, E.; Lee, J.-J.; Park, J.; Choi, W. J. Phys. Chem. B 2006, 110, 8740. https://doi.org/10.1021/jp060397e
  11. Park, H.; Choi, W. J. Phys. Chem. B 2004, 108, 4086. https://doi.org/10.1021/jp036735i
  12. Park, H.; Choi, W.; Hoffmann, M. R. J. Mater. Chem. 2008, 18, 2379. https://doi.org/10.1039/b718759a
  13. Serp, P.; Figueiredo, J. L. Carbon Materials for Fatalysis; John Wiley & Sons: New Jersey, 2009.
  14. Dillon, A. C. Chem. Rev. 2010, 110, 6856. https://doi.org/10.1021/cr9003314
  15. Guldi, D. M.; Sgobba, V. Chem. Commun. 2011, 47, 606. https://doi.org/10.1039/c0cc02411b
  16. Leary, R.; Westwood, A. Carbon 2011, 49(3), 741. https://doi.org/10.1016/j.carbon.2010.10.010
  17. Zhang, L.-W.; Fu, H.-B.; Zhu, Y.-F. Adv. Func. Mater. 2008,18(15), 2180. https://doi.org/10.1002/adfm.200701478
  18. Gao, B.; Peng, C.; Chen, G. Z.; Puma, G. L. Appl. Catal. B 2008,85(1-2), 17. https://doi.org/10.1016/j.apcatb.2008.06.027
  19. Li, Z.; Gao, B.; Chen, G. Z.; Mokaya, R.; Sotiropoulos, S.; Puma, G. L. Appl. Catal. B 2011, 110, 50. https://doi.org/10.1016/j.apcatb.2011.08.023
  20. Jiang, G.; Lin, Z.; Zhu, L.; Ding, Y.; Tang, H. Carbon 2010,48(12), 3369. https://doi.org/10.1016/j.carbon.2010.05.029
  21. Yu, J.; Ma, T.; Liu, G.; Cheng, B. Dalton T. 2011, 40(25), 6635. https://doi.org/10.1039/c1dt10274e
  22. Yang, Y.; Qu, L.; Dai, L.; Kang, T.-S.; Durstock, M. Adv. Mater. 2007, 19(9), 1239. https://doi.org/10.1002/adma.200602181
  23. Ahmmad, B.; Kusumoto, Y.; Somekawa, S.; Ikeda, M. Catal. Commun. 2008, 9(6), 1410. https://doi.org/10.1016/j.catcom.2007.12.003
  24. Kongkanand, A.; Kamat, P. V. ACS Nano 2007, 1(1), 13. https://doi.org/10.1021/nn700036f
  25. Kongkanand, A.; Kamat, P. V. Nano Lett. 2007, 7(3), 676. https://doi.org/10.1021/nl0627238
  26. Park, Y.; Kang, S.-H.; Choi, W. Phys. Chem. Chem. Phys. 2011,13(20), 9425. https://doi.org/10.1039/c1cp20697d
  27. Ng, Y. H.; Lightcap, I. V.; Goodwin, K.; Matsumura, M.; Kamat, P. V. J. Phys. Chem. Lett. 2010, 1, 2222. https://doi.org/10.1021/jz100728z
  28. Lightcap, I. V.; Kosel, T. H.; Kamat, P. V. Nano Lett. 2010, 10(2),577. https://doi.org/10.1021/nl9035109
  29. Bell, N. J.; Ng, Y. H.; Du, A.; Coster, H.; Smith, S. C.; Amal, R. J. Phys. Chem. C 2011, 115, 6004. https://doi.org/10.1021/jp1113575
  30. Zhang, W. L.; Choi, H. J. Chem. Commun. 2011, 47(45), 12286. https://doi.org/10.1039/c1cc14983k
  31. Zhang, X.-Y.; Li, H.-P.; Cui, X.-L.; Lin, Y. J. Mater. Chem. 2010, 20(14), 2801. https://doi.org/10.1039/b917240h
  32. Xiang, Q.; Yu, J.; Jaroniec, M. Nanoscale 2011, 3(9), 3670. https://doi.org/10.1039/c1nr10610d
  33. Fan, W.; Lai, Q.; Zhang, Q.; Wang, Y. J. Phys. Chem. C 2011, 115(21), 10694. https://doi.org/10.1021/jp2008804
  34. Kim, H. C.; Moon, G.; Monllor-Satoca, D.; Park, Y.; Choi, W. J. Phys. Chem. C 2012, 116, 1535. https://doi.org/10.1021/jp209035e
  35. Colon, G.; Hidalgo, M. C.; Macias, M.; Navio, J. A. Appl. Catal. A 2004, 259(2), 235. https://doi.org/10.1016/j.apcata.2003.09.036
  36. El-Sheikh, A. H.; Al-Degs, Y. S.; Newman, A. P.; Lynch, D. E. Sep. Purif. Technol. 2007, 54(1), 117. https://doi.org/10.1016/j.seppur.2006.08.020
  37. Torimoto, T.; Okawa, Y.; Takeda, N.; Yoneyama, H. J. Photochem. Photobiol. A 1997, 103(1-2), 153. https://doi.org/10.1016/S1010-6030(96)04503-0
  38. Yu, Y.; Yu, J. C.; Chan, C. Y.; Che, Y. K.; Zhao, J. C.; Ding, L.; Ge, W. K.; Wong, P. K. Appl. Catal. B 2005, 61(1-2), 1. https://doi.org/10.1016/j.apcatb.2005.03.008
  39. Wang, W. D.; Serp, P.; Kalck, P.; Faria, J. L. Appl. Catal. B 2005,56(4), 305. https://doi.org/10.1016/j.apcatb.2004.09.018
  40. Vajda, K.; Mogyorosi, K.; Nemeth, Z.; Hernadi, K.; Forro, L.; Magrez, A.; Dombi, A. Phys. Status Solidi B 2011, 248(11), 2496. https://doi.org/10.1002/pssb.201100117
  41. Woan, K.; Pyrgiotakis, G.; Sigmund, W. Adv. Mater. 2009, 21(21),2233. https://doi.org/10.1002/adma.200802738
  42. Jafry, H. R.; Liga, M. V.; Li, Q.; Barron, A. R. New J. Chem. 2011,35(2), 400. https://doi.org/10.1039/c0nj00604a
  43. Dechakiatkrai, C.; Chen, J.; Lynam, C.; Phanichphant, S.; Wallace, G. G. J. Electrochem. Soc. 2007, 154(5), A407. https://doi.org/10.1149/1.2709498
  44. Yao, Y.; Li, G.; Ciston, S.; Lueptow, R. M.; Gray, K. A. Environ. Sci. Technol. 2008, 42(13), 4952. https://doi.org/10.1021/es800191n
  45. Kim, S.; Lim, S. K. Appl. Catal. B 2008, 84(1-2), 16. https://doi.org/10.1016/j.apcatb.2008.02.025
  46. Modestov, A.; Glezer, V.; Marjasin, I.; Lev, O. J. Phys. Chem. B 1997, 101, 4623. https://doi.org/10.1021/jp970132n
  47. Zhang, H.; Lv, X.; Li, Y.; Wang, Y.; Li, J. ACS Nano 2010, 4(1),380. https://doi.org/10.1021/nn901221k
  48. Zhang, Y.; Tang, Z.-R.; Fu, X.; Xu, Y.-J. ACS Nano 2010, 4(12),7303. https://doi.org/10.1021/nn1024219
  49. Akhavan, O.; Abdolahad, M.; Esfandiar, A.; Mohatashamifar, M. J. Phys. Chem. C 2010, 114, 12955. https://doi.org/10.1021/jp103472c
  50. Mao, C.-C.; Weng, H.-S. Chem. Eng. J. 2009, 155(3), 744. https://doi.org/10.1016/j.cej.2009.09.016
  51. Oh, W.-C.; Jung, A.-R.; Ko, W.-B. Mater. Sci. Eng. C 2009, 29(4),1338. https://doi.org/10.1016/j.msec.2008.10.034
  52. Zhang, Y.; Tang, Z.-R.; Fu, X.; Xu, Y.-J. ACS Nano 2011, 5(9),7426. https://doi.org/10.1021/nn202519j
  53. Hummers, W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80,1339. https://doi.org/10.1021/ja01539a017
  54. Yang, S. Y.; Choo, Y. S.; Kim, S.; Lim, S. K.; Lee, J.; Park, H. Appl. Catal. B 2012, 111-112, 317. https://doi.org/10.1016/j.apcatb.2011.10.014
  55. Ou, Y.; Lin, J.; Fang, S.; Liao, D. Chem. Phys. Lett. 2006, 429(1-3), 199. https://doi.org/10.1016/j.cplett.2006.08.024
  56. Dai, K.; Peng, T.; Ke, D.; Wei, B. Nanotechnology 2009, 20(12),125603. https://doi.org/10.1088/0957-4484/20/12/125603
  57. Choi, S. K.; Kim, S.; Lim, S. K.; Park, H. J. Phys. Chem. C 2010,114, 16475. https://doi.org/10.1021/jp104317x
  58. Zhou, K.; Zhu, Y. F.; Yang, X.; Jiang, X.; Li, C. New J. Chem. 2011, 35, 353. https://doi.org/10.1039/c0nj00623h
  59. Chang, S.-S. Mater. Sci. Eng. B 2004, B106, 56. https://doi.org/10.1016/j.mseb.2003.08.053
  60. Kim, Y.; Park, H. Energy Environ. Sci. 2011, 4, 685. https://doi.org/10.1039/c0ee00330a
  61. Kim, Y.; Park, H. Appl. Catal. B 2012, 125, 530. https://doi.org/10.1016/j.apcatb.2012.06.018
  62. Atik, M.; Zarzycki, J. J. Mater. Sci. Lett. 1994, 13, 1301. https://doi.org/10.1007/BF00270967
  63. Sener, S.; Erdemoglu, M.; Asilturk, M.; Sayilkan, H. Turk. J. Chem. 2005, 29, 487.
  64. Velasco, L. F.; Parra, J. B.; Ania, C. O. Appl. Surf. Sci. 2010, 256(17), 5254. https://doi.org/10.1016/j.apsusc.2009.12.113
  65. Ohtani, B. Chem. Lett. 2008, 37, 217.
  66. Comninellis, C. Electrochim. Acta 1994, 39, 1857. https://doi.org/10.1016/0013-4686(94)85175-1

Cited by

  1. SWNTs-catalyzed solar hydrogen production vol.3, pp.3, 2014, https://doi.org/10.5857/RCP.2014.3.3.56
  2. on Titanate Nanotubes Decorated with Nanoparticle Elemental Copper and CdS Quantum Dots vol.119, pp.19, 2015, https://doi.org/10.1021/jp511329d
  3. vol.9, pp.2, 2016, https://doi.org/10.1039/C5EE02575C
  4. Effect of Different Activated Carbon as Carrier on the Photocatalytic Activity of Ag-N-ZnO Photocatalyst for Methyl Orange Degradation under Visible Light Irradiation vol.7, pp.9, 2017, https://doi.org/10.3390/nano7090258
  5. vol.1032, pp.1742-6596, 2018, https://doi.org/10.1088/1742-6596/1032/1/012056
  6. Graphite-based N-TiO2 composites photocatalyst for removal of HCHO in water vol.56, pp.6, 2013, https://doi.org/10.1080/19443994.2014.951967
  7. Lignin-Based Composite Materials for Photocatalysis and Photovoltaics vol.376, pp.3, 2013, https://doi.org/10.1007/s41061-018-0198-z
  8. Photo-catalytic Study of Malachite Green Dye Degradation Using Rice Straw Extracted Activated Carbon Supported ZnO Nano-particles vol.9, pp.None, 2013, https://doi.org/10.2174/2210681209666190722121926
  9. High-Efficiency Photocatalytic Degradation of Tannic Acid Using TiO2 Heterojunction Catalysts vol.6, pp.43, 2013, https://doi.org/10.1021/acsomega.1c02500