DOI QR코드

DOI QR Code

Development of a Quantitative Analytical Method for Determining the Concentration of Human Urinary Paraben by LC-MS/MS

  • Lee, Seung-Youl (Health Effect Analysis Team, National Institute of Food and Drug Safety Evaluation, Korea Food and Drug Administration) ;
  • Son, Eunjung (Health Effect Analysis Team, National Institute of Food and Drug Safety Evaluation, Korea Food and Drug Administration) ;
  • Kang, Jin-Young (Health Effect Analysis Team, National Institute of Food and Drug Safety Evaluation, Korea Food and Drug Administration) ;
  • Lee, Hee-Seok (Health Effect Analysis Team, National Institute of Food and Drug Safety Evaluation, Korea Food and Drug Administration) ;
  • Shin, Min-Ki (Health Effect Analysis Team, National Institute of Food and Drug Safety Evaluation, Korea Food and Drug Administration) ;
  • Nam, Hye-Seon (Health Effect Analysis Team, National Institute of Food and Drug Safety Evaluation, Korea Food and Drug Administration) ;
  • Kim, Sang-Yub (Health Effect Analysis Team, National Institute of Food and Drug Safety Evaluation, Korea Food and Drug Administration) ;
  • Jang, Young-Mi (Health Effect Analysis Team, National Institute of Food and Drug Safety Evaluation, Korea Food and Drug Administration) ;
  • Rhee, Gyu-Seek (Health Effect Analysis Team, National Institute of Food and Drug Safety Evaluation, Korea Food and Drug Administration)
  • Received : 2012.10.31
  • Accepted : 2013.01.21
  • Published : 2013.04.20

Abstract

Parabens, the esters of p-hydroxybenzoic acid, have been widely used as antimicrobial preservatives in cosmetic products, drugs, and processed foods and beverages. However, some parabens have been shown to have weak estrogenic effects through in vivo and in vitro studies. Because such widespread use has raised concerns about the potential human health risks associated with exposure to parabens, we developed a simultaneous analytical method to quantify 4 parabens (methyl, ethyl, propyl, and butyl) in human urine, by using solid-phase extraction and high-performance liquid chromatography coupled with triple quadrupole mass spectrometry. This method showed good specificity, linearity ($R^2$ > 0.999), accuracy (92.2-112.4%), precision (0.9-9.6%, CV), and recovery (95.7-102.0%). The LOQs for the 4 parabens were 1.0, 0.5, 0.2, and 0.5 ng/mL, respectively. This method could be used for quick and accurate analysis of a large number of human samples in epidemiological studies to assess the prevalence of human exposure to parabens.

Keywords

References

  1. Weber, R. W. Ann. Allergy 1993, 70, 183.
  2. Elder, R. L. J. Am. Coll. Toxicol. 1984, 3, 147. https://doi.org/10.3109/10915818409021274
  3. Soni, M. G.; Carabin, I. G.; Burdock, G. A. Food Chem. Toxicol. 2005, 43, 985. https://doi.org/10.1016/j.fct.2005.01.020
  4. CIR Expert Panel. Int. J. Toxicol. 2009, 27, 1.
  5. Okubo, T.; Yokoyama, Y.; Kano K.; Kano, I. Food Chem. Toxicol. 2001, 39, 1225. https://doi.org/10.1016/S0278-6915(01)00073-4
  6. Byford, J. R.; Shaw, L. E.; Drew, M. G.; Pope, G. S.; Sauer, M. J.; Darbre, P. D. J. Steroid Biochem. Mol. Biol. 2002, 80, 49. https://doi.org/10.1016/S0960-0760(01)00174-1
  7. Darbre, P. D.; Aljarrah, A.; Miller, W. R.; Coldham, N. G.; Sauer, M. J.; Pope, G. S. J. Appl. Toxicol. 2004, 24, 5. https://doi.org/10.1002/jat.958
  8. Darbre, P. D.; Byford, J. R.; Shaw, L. E.; Hall, S.; Coldham, N. G.; Pope, G. S.; Sauer, M. J. J. Appl. Toxicol. 2003, 23, 43. https://doi.org/10.1002/jat.886
  9. Darbre, P. D.; Byford, J. R.; Shaw, L. E.; Horton, R. A.; Pope, G. S.; Sauer, M. J. J. Appl. Toxicol. 2002, 22, 219. https://doi.org/10.1002/jat.860
  10. Lemini, C.; Jaimez, R.; Avila, M. E.; Franco, Y.; Larrea, F.; Lemus, A. E. Toxicol. Ind. Health 2003, 19, 69. https://doi.org/10.1191/0748233703th177oa
  11. Pugazhendhi, D.; Pope, G. S.; Darbre, P. D. J. Apple Toxicol. 2005,25, 301. https://doi.org/10.1002/jat.1066
  12. Oishi, S. Toxicol. Ind. Health. 2001, 17, 31. https://doi.org/10.1191/0748233701th093oa
  13. Oishi, S. Food Chem. Toxicol. 2002, 40, 1807. https://doi.org/10.1016/S0278-6915(02)00204-1
  14. Oishi, S. Food Chem. Toxicol. 2004, 42, 1845. https://doi.org/10.1016/j.fct.2004.06.015
  15. Kang, K. S.; Che, J. H.; Ryu, D. Y.; Kim, T. W.; Li, G. X.; Lee, Y. S. J. Vet. Med. Sci. 2002, 64, 227. https://doi.org/10.1292/jvms.64.227
  16. Tavares, R. S.; Martins, F. C.; Oliveira, P. J.; Ramalho-Santos, J.; Peixoto, F. P. Reprod. Toxicol. 2009, 27, 1. https://doi.org/10.1016/j.reprotox.2008.10.002
  17. Kiwada, H.; Awazu, S.; Hanano, M. J. Pharmacobio. Dyn. 1979,2, 356. https://doi.org/10.1248/bpb1978.2.356
  18. Kiwada, H.; Awazu, S.; Hanano, M. J. Pharmacobio. Dyn. 1980,3, 353. https://doi.org/10.1248/bpb1978.3.353
  19. Ye, X. Y.; Bishop, A. M.; Reidy, J. A.; Needham, L. L.; Calafat, A. M. Environ. Health Perspect 2006a, 114, 1843.
  20. Julie, B.; Camilla, T.; Sofie, C.; Ulla, H. Reprod. Toxicology 2010,30, 301. https://doi.org/10.1016/j.reprotox.2010.03.011
  21. Janjua, N. R.; Frederiksen, H.; Skakkebaek, N. E.; Wulf, H. C.; Andersson, A. M. Int. J. Androl. 2008, 31, 118. https://doi.org/10.1111/j.1365-2605.2007.00841.x
  22. Tan, B. L. L.; Mohd, M. A. Talanta 2003, 61, 385. https://doi.org/10.1016/S0039-9140(03)00281-9
  23. Yoshimura, Y.; Brock, J. W.; Makino, T.; Nakazawa, H. Anal. Chim. Acta 2002, 458, 331. https://doi.org/10.1016/S0003-2670(02)00077-6
  24. Allmyr, M.; McLachlan, M. S.; Sandborgh-Englund, G.; Adolfsson- Erici, M. Anal. Chem. 2006, 78, 6542. https://doi.org/10.1021/ac060666x
  25. Xiaoyun, Y.; Lily, J. T.; Larry, L. N.; Antonia, M. C. Talanta 2008, 76,865. https://doi.org/10.1016/j.talanta.2008.04.034

Cited by

  1. UHPLC–MS/MS method for the determination of bisphenol A and its chlorinated derivatives, bisphenol S, parabens, and benzophenones in human urine samples vol.406, pp.15, 2014, https://doi.org/10.1007/s00216-014-7785-9
  2. Matrix-assisted laser desorption/ionization mass spectrometry analysis of dimethyl arginine isomers from urine vol.6, pp.13, 2014, https://doi.org/10.1039/C4AY00309H
  3. Determination of parabens in human urine by liquid chromatography coupled with electrospray ionization tandem mass spectrometry vol.6, pp.15, 2014, https://doi.org/10.1039/C3AY42063A
  4. A comparative study on different functionalized mesoporous silica nanomagnetic sorbents for efficient extraction of parabens vol.12, pp.9, 2015, https://doi.org/10.1007/s13738-015-0626-8
  5. Ultrasound-assisted hydrolysis of conjugated parabens in human urine and their determination by UPLC–MS/MS and UPLC–HRMS vol.408, pp.6, 2016, https://doi.org/10.1007/s00216-015-9265-2
  6. Analysis Method of Parabens in Human Breast Milk by LC-MS/MS System vol.60, pp.2, 2016, https://doi.org/10.5012/jkcs.2016.60.2.118
  7. Exploiting green sorbents in rotating-disk sorptive extraction for the determination of parabens by high-performance liquid chromatography with tandem electrospray ionization triple quadrupole mass spectrometry pp.16159306, 2018, https://doi.org/10.1002/jssc.201800426
  8. Electrochemical Determination of Neomycin and Norfloxacin at a Novel Polymer Nanocomposite Electrode in Aqueous Solution vol.50, pp.12, 2013, https://doi.org/10.1080/00032719.2016.1261876
  9. LC-MS/MS 시스템을 이용한 소변 중 N-니트로사민류 분석법 확립 vol.61, pp.2, 2013, https://doi.org/10.5012/jkcs.2017.61.2.51
  10. Bioanalytical methodologies for clinical investigation of endocrine-disrupting chemicals: a comprehensive update vol.13, pp.1, 2013, https://doi.org/10.4155/bio-2020-0246
  11. Exposure of bisphenol A in breast cancer patients—quantitatively assessed by sensitivity‐enhanced high‐performance liquid chromatography coupled with fluorescence detection: A case vol.35, pp.9, 2013, https://doi.org/10.1002/bmc.5137
  12. A simple and rapid HPLC method for determination of parabens and their degradation products in pharmaceutical dosage forms vol.35, pp.10, 2013, https://doi.org/10.1002/bmc.5152