DOI QR코드

DOI QR Code

High-yield Expression and Characterization of Syndecan-4 Extracellular, Transmembrane and Cytoplasmic Domains

  • Choi, Sung-Sub (Department of Chemistry and Protein Research Center for Bio-Industry, Hankuk University of Foreign Studies) ;
  • Kim, Ji-Sun (Department of Chemistry and Protein Research Center for Bio-Industry, Hankuk University of Foreign Studies) ;
  • Song, Jooyoung (Department of Chemistry and Protein Research Center for Bio-Industry, Hankuk University of Foreign Studies) ;
  • Kim, Yongae (Department of Chemistry and Protein Research Center for Bio-Industry, Hankuk University of Foreign Studies)
  • Received : 2012.12.27
  • Accepted : 2013.01.21
  • Published : 2013.04.20

Abstract

The syndecan family consists of four transmembrane heparan sulfate proteoglycans present in most cell types and each syndecan shares a common structure containing a heparan sulfate modified extracellular domain, a single transmembrane domain and a C-terminal cytoplasmic domain. To get a better understanding of the mechanism and function of syndecan-4 which is one of the syndecan family, it is crucial to investigate its three-dimensional structure. Unfortunately, it is difficult to prepare the peptide because it is membrane-bound protein that transverses the lipid bilayer of the cell membrane. Here, we optimize the expression, purification, and characterization of transmembrane, cytoplasmic and short extracellular domains of syndecan4 (syndecan-4 eTC). Syndecan-4 eTC was successfully obtained with high purity and yield from the M9 medium. The structural information of syndecan-4 eTC was investigated by MALDI-TOF mass (MS) spectrometry, circular dichroism (CD) spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy. It was confirmed that syndecan-4 eTC had an ${\alpha}$-helical multimeric structure like transmembrane domain of syndecan-4 (syndecan-4 TM) in membrane environments.

Keywords

References

  1. Elenius, K.; Kalkanen, M. J. Cell Sci. 1994, 107, 2975.
  2. Häcker, U.; Nybakken, K.; Perrimon, N. Nat. Rev. Mol. Cell Bio. 2005, 6, 530. https://doi.org/10.1038/nrm1681
  3. David, G.; Schueren, B.; Marynen, P.; Cassiman, J. J.; Berhe, H. J. Cell Biol. 1992, 11, 961.
  4. Tetsuhito, K.; Shworak, N. W.; Rosenberg, R. D. J. Biol. Chem. 1992, 287, 4870.
  5. Alexopoulou, A. N.; Multhaupt, H. A. B.; Couchman, J. R. Int. J. Biochem. Cell 2007, 39, 505. https://doi.org/10.1016/j.biocel.2006.10.014
  6. Beauvais, D. M.; Rapraeger, A. C. Reprod. Biol. Endocrin. 2004, 2, 3. https://doi.org/10.1186/1477-7827-2-3
  7. Gulyás, M.; Hjerper, A. J. Pathol. 2003, 199, 479. https://doi.org/10.1002/path.1312
  8. Roskams, T.; De Vos, R.; David, G.; Damme, B.; Desmet, V. J. Pathol. 1998, 185, 290. https://doi.org/10.1002/(SICI)1096-9896(199807)185:3<290::AID-PATH91>3.0.CO;2-I
  9. Echtermeyer, F.; Streit, M.; Wilcox-Adelman, S.; Saoncella, S.; Denhez, F.; Detmar, M.; Goetinck, P. F. J. Clin. Invest. 2001, 107, R9. https://doi.org/10.1172/JCI10559
  10. Shimazu, A.; Bachchu, M. A. H.; Morishita, M.; Noshiro, M.; Kato, Y.; Iwamoto, Y. J. Dent. Res. 1999, 78, 1791. https://doi.org/10.1177/00220345990780120501
  11. Yung, S.; Woods, A.; Chan, T. M.; Davies, M.; Williams, J. D.; Couchman, J. R. FASEB J. 2001, 15, 1631.
  12. Hirabayashi, K.; Numa, F.; Suminami, Y.; Murakami, A.; Murakami, T.; Kato, H. Tumour Biol. 1998, 19, 454. https://doi.org/10.1159/000030037
  13. Woods, A.; Couchman, J. R. Curr. Opin. Cell Biol. 2001, 13, 578. https://doi.org/10.1016/S0955-0674(00)00254-4
  14. Zhang, Y.; Pasparakis, M.; Kollias, G.; Simons, M. J. Biol. Chem. 1999, 274, 14786. https://doi.org/10.1074/jbc.274.21.14786
  15. Baba, F.; Swartz, K.; Buren, R.; Eickhoff, J.; Zhang, Y.; Wolberg, W.; Friedl, A. Breast Cancer Res. Tr. 2006, 98, 91. https://doi.org/10.1007/s10549-005-9135-2
  16. Lendorf, M. E.; Manon-Jensen, T.; Kronqvist, P.; Multhaupt, H. A. B.; Couchman, J. R. J. Histochem. Cytochem. 2011, 59, 615. https://doi.org/10.1369/0022155411405057
  17. Alexander, C. M.; Reichsman, F.; Hinkes, M. T.; Lincecum, J.; Becker, K. A.; Cumberledge, S.; Bernfield, M. Nat. Genet. 2000, 25, 329. https://doi.org/10.1038/77108
  18. Huang, W.; Chiquet-Ehrismann, R.; Moyano, J. V.; Garcia-Pardo, A.; Orend, G. Cancer Res. 2001, 161, 8586.
  19. Chipquet-Ehrismann, R.; Kalla, P.; Pearson, C. A.; Beck, K.; Chiquet, M. Cell 1998, 53, 383.
  20. Longley, R. L.; Woods, A.; Fleetwood, A.; Cowling, G. J.; Gallagher, J. T.; Couchman, J. R. J. Cell. Sci. 1999, 112, 3421.
  21. Horowitz, A.; Tkachenko, E.; Simons, M. J. Cell Sci. 2002, 157, 715. https://doi.org/10.1083/jcb.200112145
  22. Okina, E.; Manon-Jensen, T.; Whiteford, J. R.; Couchman, J. R. Scand. J. Med. Sci. Sports 2009, 19, 479. https://doi.org/10.1111/j.1600-0838.2009.00941.x
  23. Couchman, J. R.; Vogt, S.; Lim, S. T.; Oh, E. S.; Prestwich, G. D.; Theibert, A.; Lee, W.; Woods, A. J. Biol. Chem. 2002, 277, 49296. https://doi.org/10.1074/jbc.M209679200
  24. Song, Y.; McFarland, D. C.; Velleman, S. G. Comp. Biochem. Physiol. Pt. A 2012, 161, 271. https://doi.org/10.1016/j.cbpa.2011.11.007
  25. Oh, E. S.; Woods, A.; Couchman, J. R. J. Biol. Chem. 1997, 272, 11805. https://doi.org/10.1074/jbc.272.18.11805
  26. Lee, D.; Oh, E. S.; Woods, A.; Couchman, J. R.; Lee, W. J. Biol. Chem. 1998, 273, 13022. https://doi.org/10.1074/jbc.273.21.13022
  27. Whiteford, J. R.; Ko, S.; Lee, W.; Couchman, J. R. J. Biol. Chem. 2008, 283, 29322. https://doi.org/10.1074/jbc.M803505200
  28. Park, T. J.; Kim, J. S.; Choi, S. S.; Kim, Y. Protein Expr. Purif. 2009, 65, 23. https://doi.org/10.1016/j.pep.2008.12.009
  29. Opella, S. J. Nat. Struct. Biol. 1997, 4, 845.
  30. Park, T. J.; Kim, J. S.; Ahn, H. C.; Kim, Y. Biophys. J. 2011, 101, 1193. https://doi.org/10.1016/j.bpj.2011.06.067
  31. Opella, S. J.; Marassi, F. M. Chem. Rev. 2004, 104, 3587. https://doi.org/10.1021/cr0304121
  32. Park, T. J.; Lee, M. H.; Kim, J. S.; Kim, Y. Process Biochem. 2011, 46, 1166. https://doi.org/10.1016/j.procbio.2011.02.006
  33. Walkenhorst, W. F.; Merzlyakov, M.; Hristova, K.; Wimley, W. C. Biochim. Biophs. Acta 2009, 1788, 1321. https://doi.org/10.1016/j.bbamem.2009.02.017
  34. Grefrath, S. P.; Reynolds, J. A. Proc. Nat. Acad. Sci. USA 1974, 71, 3913. https://doi.org/10.1073/pnas.71.10.3913
  35. Rath, A.; Glibowicka, M.; Nadeau, V. G.; Chen, G.; C. Deber, M. PNAS 2008, 106, 1760.
  36. Shin, J.; Song, Y.; McFarland, D. C.; Velleman, S. G. Mol. Cell Biochem. 2012, 363, 437. https://doi.org/10.1007/s11010-011-1198-2
  37. Choi, Y.; Kim, S.; Lee, J.; Ko, S. G.; Lee, W.; Han, I. O.; Woods, A.; Oh, E. S. Eur. J. Cell Biol. 2008, 87, 807. https://doi.org/10.1016/j.ejcb.2008.04.005
  38. Gopal, S.; Bober, A.; Whiteford, J. R.; Multhaupt, H. A. B.; Yoneda, A.; Couchman, J. R. J. Biol. Chem. 2010, 19, 14247.
  39. Dews, I. C.; MacKenzie, K. R. PNAS 2007, 104, 20782. https://doi.org/10.1073/pnas.0708909105