DOI QR코드

DOI QR Code

Comparison of Photocyclization Reactions of Fluoro- vs Nonfluoro-Substituted Polymethyleneoxy Donor Linked Phthalimides

  • Park, Hea Jung (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Ryu, Young Ju (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Kim, Kyung Mok (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Yoon, Ung Chan (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Kim, Eunae (BK-21 Project Team, College of Pharmacy, Chosun University) ;
  • Sohn, Youngku (Department of Chemistry, Yeungnam University) ;
  • Cho, Dae Won (Department of Chemistry, Yeungnam University) ;
  • Mariano, Patrick S. (Department of Chemistry and Chemical Biology, University of New Mexico)
  • 투고 : 2012.12.19
  • 심사 : 2013.01.14
  • 발행 : 2013.04.20

초록

Photochemical reactions of fluoro- vs. nonfluoro-substituted polymethylenoxy chain linked phthalimide were carried out to explore how electronegative fluorine atoms inside the donor chain influence photocyclization reaction efficiencies and to briefly determine the alkali metal binding properties of the photoproducts. The results of this study show that the fluorine-substituted donor chain linked phthalimide undergoes inefficient photocyclization via single electron transfer (SET)-induced excited state pathways to generate 14-membered cyclic amidol compared to nonfluoro-analog due to low electron donor ability of the terminal oxygen donor site. These results show that photoinduced intramolecular SET processes arising from ${\alpha}$-silyl ether electron donors to phthalimides are largely dependent on the kinds of substituents inside donor chain. Finally, a preliminary study with the cyclic amidols generated in this effort showed that they have weak alkali metal cation binding properties regardless of absence/presence of fluoro-substituents.

키워드

참고문헌

  1. Colvin, E. W. Chem. Soc. Rev. 1978, 7(1), 15. https://doi.org/10.1039/cs9780700015
  2. Colvin, E. Silicon in Organic Synthesis; Butterworth: London, 1981.
  3. Barbero, A.; Pulido, F. J. Acc. Chem. Res. 2004, 37(10), 817. https://doi.org/10.1021/ar0400490
  4. Brook, M. A. Silicon in Organic, Organometallic, and Polymer Chemistry, Wiley-Interscience: New York, USA, 1999.
  5. Steinmetz, M. G. Chem. Rev. 1995, 95(5), 1527. https://doi.org/10.1021/cr00037a017
  6. Cho, D. W.; Yoon, U. C.; Mariano, P. S. Acc. Chem. Res. 2011, 44(3), 204. https://doi.org/10.1021/ar100125j
  7. Yoon, U. C.; Mariano, P. S. Acc. Chem. Res. 2001, 34(7), 523. https://doi.org/10.1021/ar010004o
  8. Yoon, U. C.; Mariano, P. S. Acc. Chem. Res. 1992, 25(5), 233. https://doi.org/10.1021/ar00017a005
  9. Yoon, U. C.; Mariano, P. S. Bull. Korean Chem. Soc. 2006, 27(8), 1099. https://doi.org/10.5012/bkcs.2006.27.8.1099
  10. Yoon, U. C.; Jin, Y. X.; Oh, S. W.; Park, C. H.; Park, J. H.; Campana, C. F.; Cai, X.; Duesler, E. N.; Mariano, P. S. J. Am. Chem. Soc. 2003, 125(35), 10664. https://doi.org/10.1021/ja030297b
  11. Yoon, U. C.; Oh, S. W.; Lee, C. W. Heterocycles 1995, 41(2), 2665. https://doi.org/10.3987/COM-95-7029
  12. Yoon, U. C.; Cho, S. J.; Oh, J. H.; Kang, K. T.; Lee, J. G.; Mariano, P. S. Bull. Korean Chem. Soc. 1991, 12(1), 57.
  13. Yoshida, J.; Watanabe, M.; Toshioka, H.; Imagawa, M.; Suga, S. J. Electroanal. Chem. 2001, 507(1-2), 55. https://doi.org/10.1016/S0022-0728(01)00402-8
  14. Yoshida, J.; Kataoka, K.; Horcajada, R.; Nagaki, A. Chem. Rev. 2008, 108(7), 2265. https://doi.org/10.1021/cr0680843
  15. Yoshida, J.; Watanabe, M.; Toshioka, H.; Imagawa, M.; Suga, S. Chem. Lett. 1998, 1011.
  16. Koizumi, T.; Fuchigami, T.; Nonaka, T. Bull. Chem. Soc. Jpn. 1989, 62(1), 219. https://doi.org/10.1246/bcsj.62.219
  17. Suga, S.; Watanabe, M.; Yoshida, J. J. Am. Chem. Soc. 2002, 124(50), 14824. https://doi.org/10.1021/ja028663z
  18. Suga, S.; Watanabe, M.; Song, C.-H.; Yoshida, J. Electrochemistry 2006, 74(8), 672. https://doi.org/10.5796/electrochemistry.74.672
  19. Yoshida, J.; Murata, T.; Isoe, S. Tetrahedron Lett. 1986, 27(29), 3373. https://doi.org/10.1016/S0040-4039(00)84799-1
  20. Yoshida, J.; Sugawara, M.; Tatsumi, M.; Kise, N. J. Org. Chem. 1998, 63(17), 5950. https://doi.org/10.1021/jo980601x
  21. Yoshida, J.; Sugawara, M.; Kise, N. Tetrahedron Lett. 1996, 37(18), 3157. https://doi.org/10.1016/0040-4039(96)00516-3
  22. Yoshida, J.; Ishichi, Y.; Isoe, S. J. Am. Chem. Soc. 1992, 114(19), 7594. https://doi.org/10.1021/ja00045a060
  23. Yoshida, J.; Izawa, M. J. Am. Chem. Soc. 1997, 119(40), 9361. https://doi.org/10.1021/ja970899t
  24. Kaimakliotis, C.; Fry, A. J. J. Org. Chem. 2003, 68(26), 9893. https://doi.org/10.1021/jo030264e
  25. Yoshida, J.; Maekawa, T.; Murata, T.; Matsunaya, S.; Isoe, S. J. Am. Chem. Soc. 1990, 112(5), 1962. https://doi.org/10.1021/ja00161a049
  26. Yoshida, J.; Matsunaga, S.; Murata, T.; Isoe, S. Tetrahedron 1991, 47(4-5), 615. https://doi.org/10.1016/S0040-4020(01)87051-4
  27. Cooper, B. E.; Owen, W. J. J. Organomet. Chem. 1971, 29(1), 33. https://doi.org/10.1016/S0022-328X(00)87488-4
  28. Sung, N. K.; Cho, D. W.; Choi, J. H.; Choi, K. W.; Yoon, U. C.; Maeda, H.; Mariano, P. S. J. Org. Chem. 2007, 72(23), 8831. https://doi.org/10.1021/jo701770x
  29. Yoon, U. C.; Kwon, H. C.; Hyung, T. G.; Choi, K. H.; Oh, S. W.; Yang, S.; Zhao, Z.; Mariano, P. S. J. Am. Chem. Soc. 2004, 126(4), 1110. https://doi.org/10.1021/ja0305712
  30. Cho, D. W.; Choi, J. H.; Oh, S. W.; Quan, C.; Yoon, U. C.; Wang, R.; Yang, S.; Mariano, P. S. J. Am. Chem. Soc. 2008, 130(7), 2276. https://doi.org/10.1021/ja076846l
  31. Zang, X. M.; Yeh, S.-R.; Hong, S.; Freccero, M.; Albini, A.; Falvey, D. E.; Mariano, P. S. J. Am. Chem. Soc. 1994, 116(10),4211. https://doi.org/10.1021/ja00089a010
  32. Su, Z.; Mariano, P. S.; Falvey, D. E.; Yoon, U. C.; Oh, S. W. J. Am. Chem. Soc. 1998, 120(41), 10676. https://doi.org/10.1021/ja981541f
  33. Baciocchi, E.; Giacco, T. D.; Elisei, F.; Lapi, A. J. Org. Chem. 2006, 71(3), 853. https://doi.org/10.1021/jo051145x
  34. Yoon, U. C.; Mariano, P. S. Acc. Chem. Res. 1992, 25(5), 233. https://doi.org/10.1021/ar00017a005
  35. Wang, R.; Zhao, Z.; Mariano, P. S.; Choi, K. H.; Kim, S. H.; Yoon, U. C. J. Photochem. Photobiol. A: Chem. 2005, 175(2-3), 232. https://doi.org/10.1016/j.jphotochem.2005.05.005
  36. Maeda, H.; Tierney, D. L.; Mariano, P. S.; Cho, D. W.; Yoon, U. C. Tetrahedron 2008, 64(22), 5268. https://doi.org/10.1016/j.tet.2008.03.031
  37. Yoon, U. C.; Oh, S. W.; Lee, J. H.; Park, J. H.; Kang, K. T.; Mariano, P. S. J. Org. Chem. 2001, 66(3), 939. https://doi.org/10.1021/jo001457u
  38. Cho, D. W.; Quan, C.; Park, H. J.; Choi, J. H.; Kim, S. R.; Hyung, T. G.; Yoon, U. C.; Kim, S. H.; Jin, Y. X.; Mariano, P. S. Tetrahedron 2010, 66(17), 3173. https://doi.org/10.1016/j.tet.2010.02.074
  39. Katoh, A.; Kudo, H.; Saito, R. Heterocycles 2005, 66, 285. https://doi.org/10.3987/COM-05-S(K)20
  40. Kanaoka, Y.; Migita, Y.; Koyama, K.; Sato, Y.; Nakai, H.; Mizoguchi, T. Tetrahedron Lett. 1973, 1193.
  41. Kanaoka, Y.; Koyama, K.; Flippen, J. L.; Karle, I. L.; Witkop, B. J. Am. Chem. Soc. 1974, 96(14), 4719. https://doi.org/10.1021/ja00821a084
  42. Gorner, H.; Oelgemoeller, M.; Griesbeck, A. G. J. Phys. Chem. A 2002, 106(7), 1458. https://doi.org/10.1021/jp011090c
  43. Gokel, G. W. Crown Ethers and Cryptands; Royal Society of Chemistry, Oxford, 1991.
  44. Ouchi, M.; Inoue, Y.; Sakamoto, H.; Yamahira, A.; Yoshinaga, M.; Hakushi, T. J. Org. Chem. 1983, 48(19), 3168. https://doi.org/10.1021/jo00167a007
  45. Ouchi, M.; Inoue, Y.; Kanzaki, T.; Hakushi, T. J. Org. Chem. 1984, 49(8), 1408. https://doi.org/10.1021/jo00182a017
  46. Takemura, H.; Nakashima, S.; Kon, N.; Inazu, T. Tetrahedron Lett. 2000, 41(32), 6105. https://doi.org/10.1016/S0040-4039(00)01022-4
  47. Sazonov, P. K.; Oprunenko, Y. F.; Khrustalev, V. N.; Beletskaya, I. P. J. Fluorine Chem. 2011, 132(9), 587. https://doi.org/10.1016/j.jfluchem.2011.06.008
  48. Sarazin, Y.; Liu, B.; Roisnel, T.; Maron, L.; Carpentier, J.-F. J. Am. Chem. Soc. 2011, 133(23), 9069. https://doi.org/10.1021/ja2024977