DOI QR코드

DOI QR Code

Donor-π-Acceptor Type Diphenylaminothiophenyl Anthracene-mediated Organic Photosensitizers for Dye-sensitized Solar Cells

  • Heo, Dong Uk (Department of Chemistry, Research Institute for Natural Sciences, Korea University) ;
  • Kim, Sun Jae (Department of Chemistry, Research Institute for Natural Sciences, Korea University) ;
  • Yoo, Beom Jin (Department of Chemistry, Research Institute for Natural Sciences, Korea University) ;
  • Kim, Boeun (Photo-electronic Hybrids Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Ko, Min Jae (Photo-electronic Hybrids Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Cho, Min Ju (Department of Chemistry, Research Institute for Natural Sciences, Korea University) ;
  • Choi, Dong Hoon (Department of Chemistry, Research Institute for Natural Sciences, Korea University)
  • Received : 2012.11.26
  • Accepted : 2013.01.09
  • Published : 2013.04.20

Abstract

Two new metal-free organic dyes bridged by anthracene-mediated ${\pi}$-conjugated moieties were successfully synthesized for use in a dye-sensitized solar cell (DSSC). A N,N-diphenylthiophen-2-amine unit in these dyes acts as an electron donor, while a (E)-2-cyano-3-(thiophen-2-yl)acrylic acid group acts as an electron acceptor and an anchoring group to the $TiO_2$ electrode. The photovoltaic properties of (E)-2-cyano-3-(5-((10-(5-(diphenylamino)thiophen-2-yl)anthracen-9-yl)ethynyl)thiophen-2-yl)acrylic acid (DPATAT) and (E)-2-cyano-3-(5'-((10-(5-(diphenylamino)thiophen-2-yl)anthracen-9-yl)ethynyl)-2,2'-bithiophen-5-yl)acrylic acid (DPATABT) were investigated to identify the effect of conjugation length between electron donor and acceptor on the DSSC performance. By introducing an anthracene moiety into the dye structure, together with a triple bond and thiophene moieties for fine-tuning of molecular configurations and for broadening the absorption spectra, the short-circuit photocurrent densities ($J_{sc}$), and open-circuit photovoltages ($V_{oc}$) of DSSCs were improved. The improvement of $J_{sc}$ in DSSC made of DPATABT might be attributed to much broader absorption spectrum and higher molecular extinction coefficient (${\varepsilon}$) in the visible wavelength range. The DPATABT-based DSSC showed the highest power conversion efficiency (PCE) of 3.34% (${\eta}_{max}$ = 3.70%) under AM 1.5 illumination ($100mWcm^{-2}$) in a photoactive area of $0.41cm^2$, with the $J_{sc}$ of $7.89mAcm^{-2}$, the $V_{oc}$ of 0.59 V, and the fill factor (FF) of 72%. In brief, the solar cell performance with DPATABT was found to be better than that of DPATAT-based DSSC.

Keywords

References

  1. O'Regan, B.; Gratzel, M. Nature 1991, 353, 737. https://doi.org/10.1038/353737a0
  2. Gratzel, M. Nature 2001, 414, 338. https://doi.org/10.1038/35104607
  3. Nazeeruddin, M. K.; de Angelis, F.; Fantacci, S.; Selloni, A.;Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Gratzel, M. J. Am. Chem. Soc. 2005, 127, 16835. https://doi.org/10.1021/ja052467l
  4. Yum, J.-H.; Jung, I.; Baik, C.; Ko, J.; Nazeeruddin, M. K.; Gratzel, M. Energ. Environ. Sci. 2009, 2, 100. https://doi.org/10.1039/b814863p
  5. Gao, F.; Wang, Y.; Zhang, J.; Shi, D.; Wang, M.; Humphry-Baker, R.; Wang, P.; Zakeeruddin, S. M.; Gratzel, M. Chem. Commun. 2008, 2635.
  6. Horiuchi, T.; Miura, H.; Sumioka, K.; Uchida, S. J. Am. Chem. Soc. 2004, 126, 12218. https://doi.org/10.1021/ja0488277
  7. Wang, Z.-S.; Cui, Y.; Hara, K.; Dan-oh, Y.; Kasada, C.; Shinpo, A. Adv. Mater. 2007, 19, 1138. https://doi.org/10.1002/adma.200601020
  8. Hara, K.; Wang, Z.-S.; Sato, T.; Furube, A.; Katoh, R.; Sugihara, H.; Dan-oh, Y.; Kasada, C.; Shinpo, A.; Suga, S. J. Phys. Chem. B 2005, 109, 15476. https://doi.org/10.1021/jp0518557
  9. Park, S. S.; Won, Y. S.; Choi, Y. C.; Kim, J. H. Energy & Fuels 2009, 23, 3732. https://doi.org/10.1021/ef900207y
  10. Tian, H.; Yang, X.; Cong, J.; Chen, R.; Liu, J.; Hao, Y.; Hagfeldt, A.; Sun, L. Chem. Comm. 2009, 6288.
  11. Tang, J.; Wu, W.; Hua, J.; Li, J.; Li, X.; Tian, H. Chem. Comm. 2009, 982.
  12. Khazraji, A. C.; Hotchandani, S.; Das, S.; Kamat, P. V. J. Phys. Chem. B 1997, 103, 4693.
  13. Liang, M.; Xu, W.; Cai, F.; Chen, P.; Peng, B.; Chen, J.; Li, Z. J. Phys. Chem. C 2007, 111, 4465. https://doi.org/10.1021/jp067930a
  14. Hagberg, D. P.; Edvinsson, T.; Marinado, T.; Boschloo, G.; Hagfeldt, A.; Sun, L. Chem. Commun. 2006, 2245.
  15. Thomas, K. R. J.; Lin, J. T.; Hsu, Y.-C.; Ho, K.-C. Chem. Comm. 2005, 4098.
  16. Velusamy, M.; Thomas, K. R. J.; Lin, J. T.; Hsu, Y.-C.; Ho, K.-C. Org. Lett. 2005, 7, 1899. https://doi.org/10.1021/ol050417f
  17. Koumura, N.; Wang, Z.-S.; Mori, S.; Miyashita, M.; Suzuki, E.; Hara, K. J. Am. Chem. Soc. 2006, 128, 14256. https://doi.org/10.1021/ja0645640
  18. Kim, S.; Lee, J. K.; Kang, S. O.; Ko, J.; Yum, J.-H.; Fantacci, S.; de Angelis, F.; Censo, D. D.; Nazeeruddin, M. K.; Gratzel, M. J. Am. Chem. Soc. 2006, 128, 16701. https://doi.org/10.1021/ja066376f
  19. Kozma, E.; Concina, I.; Braga, A.; Borgese, L.; Depero, L. E.; Vomiero, A.; Sberveglieri, G.; Catellani, M. J. Mater. Chem. 2011, 21, 13785. https://doi.org/10.1039/c1jm12181b
  20. Chen, C.-Y.; Wu, S.-J.; Wu, C.-G.; Chen, J.-G.; Ho, K.-C. Angew. Chem. Int. Ed. 2006, 45, 5822. https://doi.org/10.1002/anie.200601463
  21. Qin, P.; Yang, X.; Chen, R.; Sun, L.; Marinado, T.; Edvinsson, T.; Boschloo, G.; Hagfeldt, A. J. Phys. Chem. C. 2007, 111, 1853. https://doi.org/10.1021/jp065550j
  22. Fischer, M. K.; Wenger, S.; Wang, M.; Mishra, A.; Zakeeruddin, S. M.; Gratzel, M.; Bauerle, P. Chem. Mater. 2010, 22, 1836. https://doi.org/10.1021/cm903542v
  23. Tao, S.; Zhou, Y.; Lee, C. S.; Lee, S. T.; Huang, D.; Zhang, X. J. Phys. Chem. C 2008, 112, 14603. https://doi.org/10.1021/jp803957p
  24. Li, Z. H.; Wong, M. S.; Tao, Y.; Fukutani, H. Org. Lett. 2007, 9, 3659. https://doi.org/10.1021/ol701561s
  25. Liao, Y.-L.; Lin, C.-Y.; Wong, K.-T.; Hou, T.-H.; Hung, W.-Y. Org. Lett. 2007, 9, 4511. https://doi.org/10.1021/ol701994k
  26. Huang, T.-H.; Lin, J. T.; Chen, L.-Y.; Lin, Y.-T.; Wu, C.-C. Adv. Mater. 2006, 18, 602. https://doi.org/10.1002/adma.200502078
  27. Xia, Z.-Y.; Zhang, Z.-Y.; Su, J.-H.; Zhang, Q.; Fung, K.-M.; Lam, M.-K.; Li, K.-F.; Wong, W.-Y.; Cheah, K.-W.; Tian, H.; Chen, C. H. J. Mater. Chem. 2010, 20, 3768. https://doi.org/10.1039/c000092b
  28. Reddy, M. A.; Thomas, A.; Srinivas, K.; Rao, V. J.; Bhanuprakash,K.; Sridhar, B.; Kumar, A.; Kamalasanan, M. N.; Srivastava, R. J.Mater. Chem. 2009, 19, 6172. https://doi.org/10.1039/b905808g
  29. Lyu, Y. Y.; Kwak, J.; Kwon, O.; Lee, S. H.; Kim, D.; Lee, C.;Char, K. Adv. Mater. 2008, 20, 2820.
  30. Silvestri, F.; Marrocchi, A.; Seri, M.; Kim, C.; Marks, T. J.;Facchetti, A.; Taicchi, A. J. Am. Chem. Soc. 2010, 132, 6108. https://doi.org/10.1021/ja910420t
  31. Chung, D. S.; Park, J. W.; Park, J.-H.; Moon, D.; Kim, G. H.; Lee,H.-S.; Lee, D. H.; Shim, H.-K.; Kwon, S.-K.; Park, C. E. J. Mater.Chem. 2010, 20, 524. https://doi.org/10.1039/b910226d
  32. Jung, K. H.; Bae, S. Y.; Kim, K. H.; Cho, M. J.; Lee, K.; Kim, Z.H.; Choi, D. H. Chem. Commun. 2009, 5290.
  33. Marrocchi, A.; Silvestri, F.; Seri, M.; Facchetti, A.; Taticchi, A.;Marks, T. J. Chem. Commun. 2009, 1380.
  34. Teng, C.; Yang, X. C.; Yang, C.; Li, S. F.; Cheng, M.; Hagfeldt,A.; Sun, L. J. Phys. Chem. C 2010, 114, 9101. https://doi.org/10.1021/jp101238k
  35. Srinivas, K.; Yesudas, K.; Bhanuprakash, K.; Rao, V. J.; Giribabu,L. J. Phys. Chem. C 2009, 113, 20117. https://doi.org/10.1021/jp907498e
  36. Thomas, K. R. J.; Singh, P.; Baheti, A.; Hsu, Y.-C.; Ho, K.-C.;Lin, J. T. Dyes. Pigments 2011, 91, 33. https://doi.org/10.1016/j.dyepig.2011.02.006
  37. Kuang, D.; Ito, S.; Wenger, B.; Klein, C.; Moser, J. E.; Humphry-Baker, R.; Zakeerudddin, S. M.; Gratzel, M. J. Am.Chem. Soc. 2006, 128, 4146. https://doi.org/10.1021/ja058540p
  38. Kuang, D.; Wang, P.; Ito, S.; Zakeeruddin, S. M.; Gratzel, M. J. Am. Chem. Soc. 2006, 128,7732. https://doi.org/10.1021/ja061714y
  39. Bisquert, J. J. Phys. Chem. B 2002, 106, 325. https://doi.org/10.1021/jp011941g
  40. Bisquert,J.; Zaban, A.; Greenshtein, M.; Mora-Sero, I. J. Am. Chem. Soc.2004, 126, 13550. https://doi.org/10.1021/ja047311k
  41. Lee, K. M.; Suryanarayananb, V.; Ho, K. C. J. Power Sources 2009, 188, 635. https://doi.org/10.1016/j.jpowsour.2008.12.002
  42. Sun, S.; Gao, L.; Liu, Y. Appl. Phys. Lett. 2010, 96, 083113. https://doi.org/10.1063/1.3318466
  43. Kern, R.; Sastrawan, R.; Ferber, J.; Stangl, R.; Luther, J. Electrochim. Acta 2002, 47, 4213. https://doi.org/10.1016/S0013-4686(02)00444-9

Cited by

  1. Theoretical investigation of different functional groups effect on the photophysical performance of tricarbonylrhenium(I) complexes with tetrathiafulvalene derivative as dyes in dye-sensitized solar cell vol.134, pp.5, 2015, https://doi.org/10.1007/s00214-015-1665-z
  2. Triple bond-modified anthracene sensitizers for dye-sensitized solar cells: a computational study vol.5, pp.48, 2015, https://doi.org/10.1039/C5RA04408A
  3. Acetylene-bridged dyes with high open circuit potential for dye-sensitized solar cells vol.4, pp.66, 2014, https://doi.org/10.1039/c4ra07304e
  4. Triple bond rigidified anthracene-triphenylamine sensitizers for dye-sensitized solar cells vol.188, pp.None, 2013, https://doi.org/10.1016/j.solener.2019.05.051