DOI QR코드

DOI QR Code

Novel Synthesis of 3-Phenyl-chromen-4-ones Using N-Heterocyclic Carbene as Organocatalyst: An Efficient Domino Catalysis Type Approach

  • Mishra, Priya (Environmentally Benign Synthesis Lab., Department of Chemistry, University of Allahabad) ;
  • Singh, Sarita (Environmentally Benign Synthesis Lab., Department of Chemistry, University of Allahabad) ;
  • Ankit, Preyas (Environmentally Benign Synthesis Lab., Department of Chemistry, University of Allahabad) ;
  • Fatma, Shahin (Environmentally Benign Synthesis Lab., Department of Chemistry, University of Allahabad) ;
  • Singh, Divya (Environmentally Benign Synthesis Lab., Department of Chemistry, University of Allahabad) ;
  • Singh, Jagdamba (Environmentally Benign Synthesis Lab., Department of Chemistry, University of Allahabad)
  • Received : 2012.11.22
  • Accepted : 2013.01.09
  • Published : 2013.04.20

Abstract

Herein is reported a simple and efficient synthesis of isoflavones starting from various substituted phenacyl bromides and salicylaldehydes in presence of NHC. The mechanism involved domino catalysis type approach with consumption and regeneration of catalyst in two catalytic cycles. This method proved to be very lucrative and gives very good yield. The method described here represents an environmentally benign alternative to classical approach.

Keywords

References

  1. Tietze, L. F.; Rackelmann, N. Pure Appl. Chem. 2004, 76, 1967. https://doi.org/10.1351/pac200476111967
  2. Padwa, A. Pure Appl. Chem. 2004, 76, 1933. https://doi.org/10.1351/pac200476111933
  3. Ding, K.; Wang, S. Tetrahedron Letters 2005, 46, 3707. https://doi.org/10.1016/j.tetlet.2005.03.143
  4. Kumar, M.; Rawat, P.; Kureel, J.; Singh, A. K.; Singh, D.; Maurya, R. Bioorg. Med. Chem. Lett. 2011, 21, 1706. https://doi.org/10.1016/j.bmcl.2011.01.095
  5. Couladis, M.; Baziou, P.;Verykokidou, E.; Loukis, A. Phytother. Res. 2002, 16, 769. https://doi.org/10.1002/ptr.1062
  6. Conforti, F.; Statti, G. A.; Tundis, R.; Menichini, F.; Houghton, P. Fitoterapia 2002, 73, 479. https://doi.org/10.1016/S0367-326X(02)00162-4
  7. Chen, G. S.; Chang, C.-S.; Kan, W. M.; Chang, C.-L.; Wang, K. C.; Chern, J.-W. J. Med. Chem. 2001, 44, 3759. https://doi.org/10.1021/jm010433s
  8. Maurya, R.; Yadav, D. K.; Singh, G.; Bhargavan, B.; Murthy, P. S. N.; Sahai, M.; Singh, M. M. Bioorg. Med. Chem. Lett. 2009, 19, 610. https://doi.org/10.1016/j.bmcl.2008.12.064
  9. Xiang, H.; Zhao, W.; Xiao, H.; Qian, L.; Yao, Y.; Li, X.-B.; Liao, Q.-J. Bioorg. Med. Chem. 2010, 18, 3036. https://doi.org/10.1016/j.bmc.2010.03.055
  10. Edwards, J. M.; Raffauf, R. F.; Le Quesne, P. W. J. Nat. Prod. 1979, 42, 85. https://doi.org/10.1021/np50001a002
  11. Booth, C.; Hargreaves, D. F.; Hadfield, J. A.; McGown, A. T.; Potten, C. S. Br. J. Cancer 1999, 80, 1550. https://doi.org/10.1038/sj.bjc.6690559
  12. Varma, S. D.; Mikuni, I.; Kinoshita, J. H. Science 1975, 188, 1215. https://doi.org/10.1126/science.1145193
  13. Kim, H. K.; Namgoong, S. Y.; Kim, H. P. Arch. Pharm. Res. 1993, 16, 18. https://doi.org/10.1007/BF02974122
  14. Moersch, G. W.; Morrow, D. F.; Neuklis, W. A. J. Med. Chem. 1967, 10, 154. https://doi.org/10.1021/jm00314a005
  15. Orgaard, A.; Jensen, L. Exp. Biol. Med. 2008, 233, 1066. https://doi.org/10.3181/0712-MR-347
  16. Jung, S. H.; Cho, S. H.; Dang, T. H.; Lee, J. H.; Ju, J. H.; Kim, M. K.; Lee, S. H.; Ryu, J. C.; Kim, Y. Eur. J. Med. Chem. 2003, 38, 537. https://doi.org/10.1016/S0223-5234(03)00064-3
  17. Yang, H. M.; Shin, H. R.; Bang, S. C.; Lee, K. C.; Hoang, L. T. A.; Lee, I. J.; Kim, Y.; Jung, S. H. Arch. Pharm. Res. 2007, 30, 950. https://doi.org/10.1007/BF02993962
  18. Hamelmann, E.; Gelfand, E. W. Int. Arch. Allergy Immunol. 1999, 120, 8. https://doi.org/10.1159/000024215
  19. Allakhverdi, Z.; Allam, M.; Renzi, P. M. Am. J. Respir. Crit. Care Med. 2002, 165,1015. https://doi.org/10.1164/ajrccm.165.7.2109095
  20. Miksicek, R. J. Proc. Soc. Exp. Biol. Med. 1995, 208(l), 44. https://doi.org/10.3181/00379727-208-43830
  21. Peterson, G.; Barnes, S. Biochem. Biophys. Res. Commun. 1991, 179(I), 661. https://doi.org/10.1016/0006-291X(91)91423-A
  22. Bandyukova, V. A.; Cherevatyi, V. S.; Ozimina, 1.1.; Andreeva, O. A.; Lebedava, A. I.; Davydov, V. S.; Vashchenko, T. N.; Postnikova. Rmtit. Resur. 1987, 23(4), 607.
  23. Arnold, A.; Merlini, L. J. Agric. Food. Chem. 1990, 38(3), 834. https://doi.org/10.1021/jf00093a052
  24. El-Gammal; Amira, A.; Mansour, R. M. A. Zentralbl. Mikrobiol. 1986, 14, 561. Chemical Abstracts. 106, 135070a.
  25. Hajela, K.; Kapil, R. S. Eur. J. Med. Chem. 1997, 32(2), 135. https://doi.org/10.1016/S0223-5234(97)87540-X
  26. Pelter, A.; Foot, S. Synthesis 1976, 5, 326.
  27. Wahala, K.; Hase, T. A. J. Chem. Soc. Perkin Trans I 1991, 3005.
  28. Kagd, S. A.; Nair, P. M.; Venkataraman, K. Tetrahedron Letters 1962, 14, 593.
  29. Jha, H.; Zilliken, F.; Breimaier, E. Angm. Chem. Znt. Ed. Engl. 1981, 20, 102. https://doi.org/10.1002/anie.198101021
  30. Krishnamurty, H. G.; Siva Prasad, J. Tetrahedron Letters 1977, 35, 3071.
  31. Sekizaki, H.; Yokosawa, R.; Chinen, C.; Adachi, H.; Yamane, Y. Biol. Pharm. Bull. 1993, 16, 698. https://doi.org/10.1248/bpb.16.698
  32. Farkas, L.; Gottsegen, A.; Nogradi, M. J. Chem. Soc. Perkin Trans I 1974, 305. https://doi.org/10.1039/p19740000305
  33. Prakash, O.; Pahuja, S.; Goyal, S.; Sawhney, S. N.; Moriarty, R. M. Synlett. 1990, 337.
  34. Jain, A. C.; Lal, P.; Seshadri, T. R. Znd. J. Chem. 1969, 7, 305
  35. Hoshino, Y.; Miyaura, N.; Suzuki, A. Bull. Chem. Soc. Jpn. 1988, 61, 3008 https://doi.org/10.1246/bcsj.61.3008
  36. Paquette, L. A.; Stucki, H. J. Org. Chem. 1966, 31, 1232. https://doi.org/10.1021/jo01342a060
  37. Schmidt, B. Pure Appl. Chem. 2006, 78, 469. https://doi.org/10.1351/pac200678020469
  38. Noonan, C.; Baragwanath, L.; Connon, S. J. Tetrahedron Lett. 2008, 49, 4003. https://doi.org/10.1016/j.tetlet.2008.04.097
  39. Dunkelmann, P.; Jung, D. K.; Nirsche, A.; Demir, A. S.; Siegert, P.; Lingen, B.; Baumann, M.; Pohl, M.; Muller, M. J. Am. Chem. Soc. 2002, 124, 12084. https://doi.org/10.1021/ja0271476
  40. Orlandi, S.; Caporale, M.; Benagha, M.; Annunziara, R. Tetrahedron: Asymmetry 2003, 14, 3827. https://doi.org/10.1016/j.tetasy.2003.09.050
  41. Jordan, F. Nat. Prod. Rep. 2003, 20, 184. https://doi.org/10.1039/b111348h
  42. Schoerken, U.;Sprenger, G. A. Biochem Biophys. Acta 1998, 1385, 229. https://doi.org/10.1016/S0167-4838(98)00071-5
  43. Spernger, G. A.; Pohl, M. J. Mol. Catal. B: Enzym. 1999, 6, 145. https://doi.org/10.1016/S1381-1177(98)00107-6
  44. Breslow, R. J. Am. Chem. Soc. 1958, 80, 3719. https://doi.org/10.1021/ja01547a064
  45. Ugai, T.; Tanaka, S.; Dokawa, S. J. Pharm. Soc. Jpn. 1943, 63, 296.(Chem. Abstr. 1951, 45, 5148).
  46. Murry, J. A.; Frantz, D. E.; Soheili, A.; Tillyer, R.; Grabowski, E. J. Am. Chem. Soc. 2001, 123, 9696. https://doi.org/10.1021/ja0165943
  47. Stetter, H.; Kuhlmann, H. Org. React. 1991, 40, 407.
  48. Stetter, H. Angew Chem. 1976, 88, 695. https://doi.org/10.1002/ange.19760882103
  49. Stetter, H. Angew. Chem., Int. Ed. 1976, 15, 639. https://doi.org/10.1002/anie.197606391
  50. Hachisu, Y.; Bode, J. W.; Suzuki, K. J. Am. Chem. Soc. 2003, 125, 8432. https://doi.org/10.1021/ja035308f
  51. Cigannek, E. Synthesis 1995, 1311.
  52. Kerr, M. S.; Read de Alaniz, J.; Rovis, T. J. Am. Chem. Soc. 2002, 124, 10298. https://doi.org/10.1021/ja027411v
  53. Mattson, A. E.; Bharadwaj, A. R.; Zuhl, A. M.; Scheidt, K. A. J. Org. Chem. 2006, 71, 5715. https://doi.org/10.1021/jo060699c
  54. Bortolini, O.; Fantin, G.; Fogagnolo, M.; Giovannini, P. P.; Venturi, V.; Pacifico, S.; Massi, A. Tetrahedron 2011, 67, 8110. https://doi.org/10.1016/j.tet.2011.08.056
  55. Breslow, R. J. Am. Chem. Soc. 1957, 79, 1762. https://doi.org/10.1021/ja01564a064
  56. Arduengo, A. J., III; Harlow, R. L.; Kline, M. J. Am. Chem. Soc. 1991, 113, 361. https://doi.org/10.1021/ja00001a054
  57. Cheng, Y.; Meth-Cohn, O. Chem. Rev. 2004, 104, 2507. https://doi.org/10.1021/cr030604w
  58. Nair, V.; Bindu, S.; Sreekumar, V. Angew. Chem., Int. Ed. 2004, 43, 5130. https://doi.org/10.1002/anie.200301714
  59. N-Heterocyclic Carbenes in Transition Metal Catalysis; Glorius, F., Ed.; Topics in Organometallic Chemistry, Vol. 28; Springer-Verlag: Berlin/Heidelberg, 2007.
  60. N-Heterocyclic Carbenes in Synthesis; Nolan, S. P., Ed.; Wiley-VCH: Weinheim, 2006.
  61. Cesar, V.; Bellemin-Laponnaz, S.; Gade, L. H. Chem. Soc. Rev. 2004, 33, 619. https://doi.org/10.1039/b406802p
  62. Enders, D.; Balensiefer, T. Acc. Chem. Res. 2004, 37, 534. https://doi.org/10.1021/ar030050j
  63. Marion, N.; Diez-Gonzalezez, S.; Nolan, S. P. Angew. Chem., Int. Ed. 2007, 46, 2988. https://doi.org/10.1002/anie.200603380
  64. Zeitler, K. Angew. Chem., Int. Ed. 2005, 44, 7506. https://doi.org/10.1002/anie.200502617
  65. Burstein, C.; Glorius, F. Angew. Chem., Int. Ed. 2004, 43, 6205. https://doi.org/10.1002/anie.200461572
  66. Chow, K. Y. K.; Bode, J. W. J. Am. Chem. Soc. 2004, 126, 8126. https://doi.org/10.1021/ja047407e
  67. Nair, V.; Vellalath, S.; Poonoth, M.; Suresh, E. J. Am. Chem. Soc. 2006, 128, 8736. https://doi.org/10.1021/ja0625677
  68. Chan, A.; Scheidt, K. A. J. Am. Chem. Soc. 2007, 129, 5334. https://doi.org/10.1021/ja0709167
  69. Chiang, P. C.; Kaeobamrung, J.; Bode, J. W. J. Am. Chem. Soc. 2007, 129, 3520. https://doi.org/10.1021/ja0705543
  70. Phillips, E.M.; Wadamoto, M.; Chan, A.; Scheidt, K. A. Angew. Chem., Int. Ed. 2007, 46, 3107. https://doi.org/10.1002/anie.200605235
  71. Reynolds, N. T.; Rovis, T. J. Am. Chem. Soc. 2005, 127, 16406. https://doi.org/10.1021/ja055918a
  72. He, M.; Uc, G. J.; Bode, J. W. J. Am. Chem. Soc. 2006, 128, 15088. https://doi.org/10.1021/ja066380r
  73. Chow, K. Y. K.; Bode, J. W. J. Am. Chem. Soc. 2004, 126, 8126. https://doi.org/10.1021/ja047407e
  74. Sohn, S. S.; Bode, J. W. Angew. Chem., Int. Ed. 2006, 45, 6021. https://doi.org/10.1002/anie.200601919
  75. Fogg, D. E.; dos Santos, E. N. Coordination Chemistry Reviews 2004, 248, 2365. https://doi.org/10.1016/j.ccr.2004.05.012
  76. Singh, S.; Mishra, P.; Srivastava, M.; Singh, S. B.; Singh, J.; Tiwari, K. P. Green Chemistry Letters and Reviews 2012, 5, 587. https://doi.org/10.1080/17518253.2012.681706
  77. Berkessel, A.; Elfert, S.; Yatham, V. R.; Neudorfl, J.-M.; Schlorer, N. E.; Teles, J. H. Angew. Chem. Int. Ed. 2012, 51, 12370. https://doi.org/10.1002/anie.201205878
  78. Louis F. Fieser, Kenneth L. Williamson. In Organic Experiments; CDS Publishers and distributors, 1994; Seventh Edition; p 469.

Cited by

  1. ChemInform Abstract: Novel Synthesis of 3-Phenyl-chromen-4-ones Using N-Heterocylic Carbene as Organocatalyst: An Efficient Domino Catalysis Type Approach. vol.44, pp.40, 2013, https://doi.org/10.1002/chin.201340146
  2. Stille coupling for the synthesis of isoflavones by a reusable palladium catalyst in water vol.68, pp.3, 2013, https://doi.org/10.1002/jccs.202000478
  3. Arylation of ortho-Hydroxyarylenaminones by Sulfonium Salts and Arenesulfonyl Chlorides: An Access to Isoflavones vol.86, pp.7, 2013, https://doi.org/10.1021/acs.joc.0c02294