DOI QR코드

DOI QR Code

Inter-row Adsorption Configuration and Stability of Threonine Adsorbed on the Ge(100) Surfaces

  • Lee, Myungjin (Department of Chemistry, Sookmyung Women's University) ;
  • Park, Youngchan (Department of Chemistry, Sookmyung Women's University) ;
  • Jeong, Hyuk (Department of Chemistry, Sookmyung Women's University) ;
  • Lee, Hangil (Department of Chemistry, Sookmyung Women's University)
  • Received : 2012.12.07
  • Accepted : 2013.01.08
  • Published : 2013.04.20

Abstract

The adsorption structures of threonine on the Ge(100) surface were investigated using core-level photoemission spectroscopy (CLPES) in conjunction with density functional theory (DFT) calculations. CLPES measurements were performed to identify the experimentally preferred adsorption structure. The preferred structure indicated the relative reactivities of the carboxyl and hydroxymethyl groups as electron donors to the Ge(100) surface during adsorption. The core-level C 1s, N 1s, and O 1s CLPES spectra indicated that the carboxyl oxygen competed more strongly with the hydroxymethyl oxygen during the adsorption reaction. Three among six possible adsorption structures were identified as energetically favorable using DFT calculation methods that considered the inter- and intra-bonding configurations upon adsorption onto the Ge(100) surface. These structures were O-H dissociated N dative inter bonding, O-H dissociated N dative intra bonding, O-H dissociation bonding. One of the adsorption structures: O-H dissociated N dative inter bonding was predicted to be stable in light of the transition state energies. We thus confirmed that the most favorable adsorption structure is the O-H dissociated N dative-inter bonding structure using CLPES and DFT calculation.

Keywords

References

  1. Wang, G. T.; Mui, C.; Musgrave, C. B.; Bent, S. F. J. Phys. Chem. B 2001, 105, 12559. https://doi.org/10.1021/jp013058o
  2. Kasemo, B. Surf. Sci. 2002, 500, 656. https://doi.org/10.1016/S0039-6028(01)01809-X
  3. Filler, M. A.; Bent, S. F. Prog. Surf. Sci. 2003, 73, 1. https://doi.org/10.1016/S0079-6816(03)00035-2
  4. Filler, M. A.; Van Deventer, J. A.; Keung, A. J.; Bent, S. F. J. Am. Chem. Soc. 2006, 128, 770. https://doi.org/10.1021/ja0549502
  5. Bent, S. F. Surf. Sci. 2002, 500, 870.
  6. Alivisatos, A. P. J. Phys. Chem. 1996, 100, 13226. https://doi.org/10.1021/jp9535506
  7. Bent, S. F. J. Phys. Chem. B 2002, 106, 2830. https://doi.org/10.1021/jp012995t
  8. Goede, K.; Busch, P.; Grundmann, M. Nano. Lett. 2004, 4, 2115. https://doi.org/10.1021/nl048829p
  9. Estephan, E.; Larroque, C.; Cuisinier, F. J. G.; Bálint, Z.; Gergely, C. J. Phys. Chem. B 2008, 112, 8799. https://doi.org/10.1021/jp804112y
  10. Whaley, S. R.; English, D. S.; Hu, E. L.; Barbara, P. F.; Belcher, A. M. Nature 2000, 405, 665. https://doi.org/10.1038/35015043
  11. Youn, Y. S.; Jung, S. J.; Lee, H. G.; Kim, S. H. Langmuir 2009, 25, 7438. https://doi.org/10.1021/la9003565
  12. Tao, F.; Xu, G. Q. Acc. Chem. Res. 2004, 37, 882. https://doi.org/10.1021/ar0400488
  13. Hurley, P. T.; Ribbe, A. E.; Buriak, J. M. J. Am. Chem. Soc. 2003, 125, 11334. https://doi.org/10.1021/ja035857l
  14. Hovis, J. S.; Liu, H.; Hamers, R. J. Surf. Sci. 1998, 402-404, 1. https://doi.org/10.1016/S0039-6028(98)00031-4
  15. Lal, P.; Teplyakov, A. V.; Noah, Y.; Kong, M. J. J. Chem. Phys. 1999, 110, 10545. https://doi.org/10.1063/1.478986
  16. Duke, C. B. Chem. Rev. 1996, 96, 1237. https://doi.org/10.1021/cr950212s
  17. Lee, H.; Youn, Y.; Kim, S. Langmuir 2009, 25(21), 12574. https://doi.org/10.1021/la901914n
  18. Youn, Y.; Jung, S. J.; Lee, H.; Kim, S. Langmuir 2009, 25(13), 7438. https://doi.org/10.1021/la9003565
  19. Youn, Y.; Lee, H.; Kim, S. Chem. Phys. Chem. 2010, 11, 354. https://doi.org/10.1002/cphc.200900715
  20. Yang, S. N.; Kim, Y. W.; Park, S. M.; Kim, K. J.; Lee, H. Chem. Asian. J. 2011, 6, 2362. https://doi.org/10.1002/asia.201100004
  21. Jeon, S. M.; Jung, S. J.; Lim, D. K.; Kim, H. D.; Lee, H.; Kim, S. J. Am. Chem. Soc. 2006, 128, 6294. https://doi.org/10.1021/ja060253d
  22. Kachian, J. S.; Jung, S. J.; Kim, S. H.; Bent, S. F. Surf. Sci. 2011, 605, 760. https://doi.org/10.1016/j.susc.2011.01.015
  23. Rodrigues, J. J., Jr.; Misoguti, L.; Nunes, F. D.; Mendonca, C. R.; Zilio, S. C. Opt. Mat. 2003, 22, 235. https://doi.org/10.1016/S0925-3467(02)00270-7
  24. Ramesh Kumar, G.; Gokul Raj, S.; Snakar, R.; Mohan, R.; Pandi, S.; Jayaval, R. J. Crystal Growth 2004, 267, 213. https://doi.org/10.1016/j.jcrysgro.2004.03.073
  25. Cohen, S. B.; Halcomb, R. L. J. Am. Chem. Soc. 2002, 124, 2534. https://doi.org/10.1021/ja011932l
  26. Yang, S. N.; Kim, Y. W.; Park, S. M.; Lim, H. S.; Lee, H. G. J. Phys. Chem. C 2011, 115, 9131. https://doi.org/10.1021/jp200866f
  27. Schreier, F. J. Quant. Spectros. Radiat. Transfer. 1992, 48, 743. https://doi.org/10.1016/0022-4073(92)90139-U
  28. Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. Rev. 2003, 103, 1793. https://doi.org/10.1021/cr990029p
  29. Schreiner, P. R. Angew. Chem. Int. Ed. 2007, 46, 4217. https://doi.org/10.1002/anie.200700386
  30. Kohn, W.; Becke, A. D.; Parr, R. G. J. Phys. Chem. 1996, 100, 12974. https://doi.org/10.1021/jp960669l
  31. Gill, P. M. W.; Johnson, B. G.; Pople, J. A. Chemical Physics Letters 1992, 197, 499. https://doi.org/10.1016/0009-2614(92)85807-M
  32. Chermette, H. J. Comput. Chem. 1999, 20, 129. https://doi.org/10.1002/(SICI)1096-987X(19990115)20:1<129::AID-JCC13>3.0.CO;2-A
  33. Lynch, B. J.; Truhlar, D. G. J. Phys. Chem. A 2001, 105, 2936. https://doi.org/10.1021/jp004262z
  34. Durant, J. L. Chem. Phys. Lett. 1996, 256, 595. https://doi.org/10.1016/0009-2614(96)00478-2
  35. Wiest, O.; Black, K. A.; Houk, K. N. J. Am. Chem. Soc. 1994, 116, 10336. https://doi.org/10.1021/ja00101a078
  36. Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V. V.; Noodleman, L.; Sharpless, K. B.; Fokin, V. V. J. Am. Chem. Soc. 2005, 127,210. https://doi.org/10.1021/ja0471525

Cited by

  1. -Tert-butylcalix[4]arene Adsorbed on a Ge(100) Surface vol.117, pp.44, 2013, https://doi.org/10.1021/jp407596s
  2. Chemisorption of Organic Triols on Ge(100)-2 × 1 Surface: Effect of Backbone Structure on Adsorption of Trifunctional Molecules vol.121, pp.46, 2017, https://doi.org/10.1021/acs.jpcc.7b10446