DOI QR코드

DOI QR Code

Direct Electrical Probing of Rolling Circle Amplification on Surface by Aligned-Carbon Nanotube Field Effect Transistor

  • Received : 2012.10.03
  • Accepted : 2013.01.06
  • Published : 2013.04.20

Abstract

Rolling circle amplification (RCA) of DNA on an aligned-carbon nanotube (a-CNT) surface was electrically interfaced by the a-CNT based filed effect transistor (FET). Since the electric conductance of the a-CNT will be dependent upon its local electric environment, the electric conductance of the FET is expected to give a very distinctive signature of the surface reaction along with this isothermal DNA amplification of the RCA. The a-CNT was initially grown on the quartz wafer with the patterned catalyst by chemical vapor deposition and transferred onto a flexible substrate after the formation of electrodes. After immobilization of a primer DNA, the rolling circle amplification was induced on chip with the a-CNT based FET device. The electric conductance showed a quite rapid increase at the early stage of the surface reaction and then the rate of increase was attenuated to reach a saturated stage of conductance change. It took about an hour to get the conductance saturation from the start of the conductance change. Atomic force microscopy was used as a complementary tool to support the successful amplification of DNA on the device surface. We hope that our results contribute to the efforts in the realization of a reliable nanodevice-based measurement of biologically or clinically important molecules.

Keywords

References

  1. Martiìnez, T. M.; Tseng, Y.-C.; Ormategui, N.; Loinaz, I.; Eritja, R.; Bokor, J. Nano Letters 2009, 9, 530. https://doi.org/10.1021/nl8025604
  2. Uno, T.; Tabata, H.; Kawai, T. Anal. Chem. 2007, 79, 52. https://doi.org/10.1021/ac060273y
  3. Li, C.; Curreli, M.; Lin, H.; Lei, B.; Ishikawa, F. N.; Datar, R.; Cote, R. J.; Thompson, M. E.; Zhou, C. J. Am. Chem. Soc. 2005, 127, 12484. https://doi.org/10.1021/ja053761g
  4. Patolsky, F.; Zheng, G.; Lieber, C. M. Anal. Chem. 2006, 78, 4260. https://doi.org/10.1021/ac069419j
  5. Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chem. Rev. 2006, 106, 1105. https://doi.org/10.1021/cr050569o
  6. Chen, R. J.; Zhang, Y.; Wang, D.; Dai, H. J. Am. Chem. Soc. 2001, 123, 3838. https://doi.org/10.1021/ja010172b
  7. Zhou, L.; Ou, L.-J.; Chu, X.; Shen, G.-L.; Yu, R.-Q. Anal. Chem. 2007, 79, 7492. https://doi.org/10.1021/ac071059s
  8. Kang, S. J.; Kocabas, C.; Ozel, T.; Shim, M.; Pimparkar, N.; Alam, M. A.; Rotkin, S. V.; Rogers, J. A. Nature Nanotechnology 2007, 2, 230. https://doi.org/10.1038/nnano.2007.77
  9. Xiao, J.; Dunham, S.; Liu, P.; Zhang, Y.; Kocabas, C.; Moh, L.; Huang, Y.; Hwang, K.-C.; Lu, C.; Huang, W.; Rogers, J. A. Nano Letters 2009, 9, 4311. https://doi.org/10.1021/nl9025488
  10. Ding, L.; Yuan, D.; Liu, J. J. Am. Chem. Soc. 2008, 130, 5428. https://doi.org/10.1021/ja8006947
  11. Bradley, K.; Gabriel, J.-C. P.; Grüner, G. Nano Letters 2003, 3, 1353. https://doi.org/10.1021/nl0344864