DOI QR코드

DOI QR Code

Numerical Analysis on RF (Radio-frequency) Thermal Plasma Synthesis of Nano-sized Ni Metal

고주파 열플라즈마 토치를 이용한 Ni 금속 입자의 나노화 공정에 대한 전산해석 연구

  • Nam, Jun Seok (High Enthalpy Plasma Research Center, Chonbuk National University) ;
  • Hong, Bong-Guen (High Enthalpy Plasma Research Center, Chonbuk National University) ;
  • Seo, Jun-Ho (High Enthalpy Plasma Research Center, Chonbuk National University)
  • 남준석 (전북대학교 고온플라즈마 응용연구센터) ;
  • 홍봉근 (전북대학교 고온플라즈마 응용연구센터) ;
  • 서준호 (전북대학교 고온플라즈마 응용연구센터)
  • Received : 2013.04.04
  • Accepted : 2013.04.24
  • Published : 2013.05.01

Abstract

Numerical analysis on RF (Radio-Frequency) thermal plasma treatment of micro-sized Ni metal was carried out to understand the synthesis mechanism of nano-sized Ni powder by RF thermal plasma. For this purpose, the behaviors of Ni metal particles injected into RF plasma torch were investigated according to their diameters ($1{\sim}100{\mu}m$), RF input power (6 ~ 12 kW) and the flow rates of carrier gases (2 and 5 slpm). From the numerical results, it is predicted firstly that the velocities of carrier gases need to be minimized because the strong injection of carrier gas can cool down the central column of RF thermal plasma significantly, which is used as a main path for RF thermal plasma treatment of micro-sized Ni metal. In addition, the residence time of the injected particles in the high temperature region of RF thermal plasma is found to be also reduced in proportion to the flow rate of the carrier gas In spite of these effects of carrier gas velocities, however, calculation results show that a Ni metal particle even with the diameter of $100{\mu}m$ can be completely evaporated at relatively low power level of 10 kW during its flight of RF thermal plasma torch (< 10 ms) due to the relatively low melting point and high thermal conductivity. Based on these observations, nano-sized Ni metal powders are expected to be produced efficiently by a simple treatment of micro-sized Ni metal using RF thermal plasmas.

Keywords

References

  1. J. O. Hong, S. H. Kim, and K. H. Hur, J. Kor. Ceram. Soc., 46, 161 (2009). https://doi.org/10.4191/KCERS.2009.46.2.161
  2. K. M. Kim, J. H. Lee, S. M. Yoon, Y. K. Lee, H. C. Lee, and J. Y. Choi, J. Kor. Ceram. Soc., 42, 649 (2005). https://doi.org/10.4191/KCERS.2005.42.10.649
  3. J. J. Jing, J. M. Xie, H. R. Qin, W. H. Li, and M. M. Zhang, Adv. Mat. Res., 531, 211 (2012). https://doi.org/10.4028/www.scientific.net/AMR.531.211
  4. S. Takeoka, and Y. Mizuno, Jpn. J. Appl. Phys., 50, 09NC06 (2011). https://doi.org/10.1143/JJAP.50.09NC06
  5. D. W. Jung, S. M. Oh, and D. W. Park, Korean Chem. Eng. Res., 46, 701 (2008).
  6. S. Son, M. Tahery, E. Carpenter, V. G. Harris, and M. E. McHenry, J. Appl. Phys., 91, 7589 (2002). https://doi.org/10.1063/1.1452705
  7. B. Ebin and S. Gurmen, Kona Powder Part. J. 29, 134 (2011). https://doi.org/10.14356/kona.2011016
  8. C. W. Won, J. H. Lee, H. I. Won, and H. H. Lee, J. Kor. Inst. Met. & Mater., 44, 186 (2006).
  9. M. I. Boulos, P. Fauchais, and E. Pfender, Thermal Plasmas : Fundamentals and Applications, Volume 1, (Plenum Press, New York and London, 1994)
  10. P. Fauchais and A. Vardelle, IEEE Trans. Plasma Sci., 25, 1258 (1997). https://doi.org/10.1109/27.650901
  11. J. Heberlein, Pure & Appl. Chem., 74, 327 (2002). https://doi.org/10.1351/pac200274030327
  12. J. H. Seo and B. G. Hong, Nucl. Eng. Technol. 44, 9 (2012). https://doi.org/10.5516/NET.77.2012.002
  13. M. I. Boulos, J. Jurewicz, and J. Guo, US Patent 8013269 B2.
  14. P. Proulx, J. Mostaghimi, and M. I. Boulos, Plasma Chem. Plasma Process, 7, 29 (1987). https://doi.org/10.1007/BF01015998
  15. M. Shigeta, T. Watanabe, and H. Nishiyama, Thin Solid Films, 457, 192 (2004). https://doi.org/10.1016/j.tsf.2003.12.020
  16. N. Y. Mendoza-Gpnzalez, M. El. Morsli, and P. Proulx, Mater. Sci. Eng. C, 27, 1267 (2007).
  17. D. Bernadi, V. Colombo, E. Ghedini, A. Mentrelli, and T. Trombetti, IEEE Trans. Plasma Sci., 33, 424 (2005). https://doi.org/10.1109/TPS.2005.845323
  18. M. I. Boulos, Pure & Appl. Chem,. 57, 1321 (1985). https://doi.org/10.1351/pac198557091321
  19. J. H. Park and S. H. Hong, J. Korean Phys. Soc., 31, 753 (1997).
  20. D. R. Lide, CRC Handbook of Chemistry and Physics, 89th Ed., (CRC Press, 2008) p. 2736.
  21. A. A. Samarskii, Introduction to the Theory of Difference Scheme (Nauka, Moscow, 1971) p. 275.