DOI QR코드

DOI QR Code

F-PMIPv6 네트워크에서 지능적인 계층적 이동성 지원 기법

Intelligent Hierarchical Mobility Support Scheme in F-PMIPv6 Networks

  • 한성희 (성균관대학교 정보통신대학원) ;
  • 정종필 (성균관대학교 정보통신공학부)
  • 투고 : 2012.12.20
  • 심사 : 2013.03.21
  • 발행 : 2013.04.30

초록

본 논문에서는 i-FP(intelligent Fast PMIPv6)로 명명한 새로운 이동성관리 네트워크 기법을 제안한다. i-FP는 지역 이동성관리 문제를 해결하기 위해 고안했다. 하나의 도메인 내에서 MN(Mobile Node)을 다른 네트워크로 이동이 가능하게 하기 위해 i-FP에서는 PMIPv6(Proxy Mobile IPv6)의 세가지 네트워크 엔티티인 LMA(Local Mobility Anchor), MAG(Mobile Access Gateway), MN의 개념을 확장하여 기능을 추가했다. 세가지 네트워크 엔티티로 i-FP에서는 MN의 핸드오버 지연 시간을 감소시키고 IP 헤더 스와핑 메카니즘을 사용하여 트래픽 오버헤드를 회피하여 네트워크 처리량을 증가 시킨다. i-FP의 성능을 평가하기 위해, 새롭게 제안하는 i-FP와 같은 로컬 이동성 관리 프로토콜인 HMIPv6(Hierarchical Mobile IPv6), PMIPv6까지 이상 총 세가지 기법으로 다양한 기준을 사용하여 네트워크 기법의 성능을 측정 / 평가하였다. 성능평가 결과를 종합해서 i-FP가 트래픽 오버헤드가 없어지고 다른 비교 기법 대비 평균 라우팅 홉수 10.2%, 트래픽 시그널링 비용 58.5%, 핸드오버 지연은 16.3% 감소의 성능향상이 일어남을 보여준다.

In this paper, we propose a new mobility management scheme, called i-FP(intelligent Fast PMIPv6). Our proposed i-FP scheme is addressed for solving the existing local mobility management problems from legacy frameworks. To move MN(Mobile Node) to other networks in one domain, i-FP employs three network entities which are extended from PMIPv6(Proxy Mobile IPv6), LMA(Local Mobility Anchor), MAG(Mobile Access Gateway) and MN. In i-FP, the three network entities can reduce the handover delay time of MNs. Also, i-FP uses an IP header swapping mechanism to avoid the traffic overhead and improve the throughput of network. To evaluate the performance of i-FP, we analyze our i-FP, HMIPv6(Hierarchical Mobile IPv6) and PMIPv6 which are legacy protocols of local mobility management in terms of various parameters. Finally, our i-FP scheme shows good performance(reduction of routing hops 10.2%, signaling costs 58.5% and handover delay 16.3%) than other network schemes for the total cost.

키워드

참고문헌

  1. S. Deering, R. Hinden, "Internet Protocol, Version 6," NTWG RFC 2460, Dec. 1998.
  2. T. Narten, E. Nordmark, W. Simpson, and H. Soliman, "Neighbor Discovery for IP version 6," NTWG RFC 4861, Sep. 2007.
  3. R. Moskowitz, P. Nikander, P. Jokela, and T. Henderson, "Host identity protocol," IETF RFC 5201, Apr. 2008.
  4. H. Soliman, C. Castelluccia, K. ElMalki, and L. Bellier, "Hierarchical mobile IPv6 (HMIPv6) mobility management," IETF RFC 5380, Oct. 2008.
  5. H. Yokota, K. Chowdhury and R. Koodli, "Fast Handovers for Proxy Mobile IPv6," IETF RFC 5949, Sep. 2010.
  6. S. Gundavelli, K. Leung, V. Devarapalli, K. Chowdhury, and B. Patil, "Proxy mobile IPv6," IETF RFC 5213, Aug. 2008.
  7. T. Lim, C. Yeo, F. Lee, and Q. Le, "TMSP: terminal mobility support protocol," IEEE Trans. Mobile Comput., vol. 8, no. 6, pp. 849-863, June 2009. https://doi.org/10.1109/TMC.2008.154
  8. A. Valko, "Cellular IP: a new approach to internet host mobility," ACM SIGCOMM Comput. Commun. Review, vol. 29, no. 1, pp. 50-65, Jan. 1999.
  9. R. Ramjee, K. Varadhan, L. Salgarelli, S. Thuel, S. Wang, and T. La Porta, "HAWAII: a domain-based approach for supporting mobility in wide-area wireless networks," IEEE/ACM Trans. Netw., vol. 10, no. 3, pp. 396-410, June 2002. https://doi.org/10.1109/TNET.2002.1012370
  10. S. Das, A. Misra, and P. Agrawal, "TeleMIP: telecommunications enhanced mobile IP architecture for fast intradomain mobility," IEEE Personal Commun. Mag., vol. 7, no. 4, pp. 50-58, Apr. 2000.
  11. D. Saha, A. Mukherjee, I. Misra, and M. Chakraborty, "Mobility support in IP: a survey of related protocols," IEEE Network, vol. 18, no. 6, pp. 34-40, June 2004. https://doi.org/10.1109/MNET.2004.1355033
  12. Y. Gvvon, J. Kempf, and A. Yegin, "Scalability and robustness analysis of mobile IPv6, fast mobile IPv6, hierarchical mobile IPv6, and hybrid IPv6 mobility protocols using a large-scale simulation," in Proc. IEEE Int. Conf. Commun. (ICC'04), pp. 4087-4091, Paris, France, June 2004.
  13. X. Perez-Costa, M. Torrent-Moreno, and H. Hartenstein, "A performance comparison of mobile IPv6, hierarchical mobile IPv6, fast handovers for mobile IPv6 and their combination," ACM SIGCOMM Comput. Commun. Review, vol. 7, no. 4, pp. 5-19, Oct. 2003.
  14. G. Kim, "Low latency cross layer handover scheme in proxy mobile IPv6 domain," in Proc. Next Generation Teletraffic Wired/Wireless Advanced Networking (NEW2AN 2008), pp. 110-121, St. Petersburg, Russia, Sep. 2008.
  15. J. Lei and X. Fu, "Evaluating the benefits of introducing PMIPv6 for localized mobility management," in Proc. IEEE Int. Wireless Commun. Mobile Comput. Conf. (IWCMC'08), pp. 74-80, Crete Island, Greece, Aug. 2008.
  16. D. Johnson, C. Perkins, and J. Arkko, "Mobility support in IPv6," IETF RFC 3775, June 2004.
  17. R. Droms, J. Bound, B. Volz, T. Lemon, C. Perkins, and M. Carney, "Dynamic host configuration protocol for ipv6 (DHCPv6)," IETF RFC 3315, July 2003.
  18. T. Narten, E. Nordmark, W. Simpson, and H. Soliman, "Neighbor discovery for IP version 6 (IPv6)," IETF RFC 4861, Sep. 2007.
  19. S. Thomson, T. Narten, and T. Jinmei, "IPv6 stateless address auto configuration," IETF RFC 4862, Sep. 2007.
  20. J. Kempf, "Problem statement for network-based localized mobility management (NETLMM)," IETF RFC 4830, Apr. 2007.
  21. J. Kempf, "Goals for network-based localized mobility management (NETLMM)," IEFT RFC 4831, Apr. 2007.
  22. C. Vogt and J. Kempf, "Security threats to network-based localized mobility management (NETLMM)," IETF RFC 4832, Apr. 2007.
  23. D.-K. Oh and S.-W. Min, "A fast handover scheme of multicast traffics in PMIPv6," KICS Inform. Mag., vol. 36, no. 3, pp. 208-213, Mar. 2011. https://doi.org/10.7840/KICS.2011.36B.3.208