DOI QR코드

DOI QR Code

Near-field Evaluation of Surface Plasmon Resonance Biosensor Sensitivity Based on the Overlap Between Field and Target Distribution

근접장-분자반응 간의 중첩을 이용한 표면 플라스몬 공명 센서 감도 평가에 관한 연구

  • Ryu, Yeonsoo (School of Electrical and Electronic Engineering, Yonsei Institute of Medical Instruments Technology, Yonsei University) ;
  • Son, Taehwang (School of Electrical and Electronic Engineering, Yonsei Institute of Medical Instruments Technology, Yonsei University) ;
  • Kim, Donghyun (School of Electrical and Electronic Engineering, Yonsei Institute of Medical Instruments Technology, Yonsei University)
  • 류연수 (연세대학교 전기전자공학부, 의료기기기술 연구소) ;
  • 손태황 (연세대학교 전기전자공학부, 의료기기기술 연구소) ;
  • 김동현 (연세대학교 전기전자공학부, 의료기기기술 연구소)
  • Received : 2013.03.18
  • Accepted : 2013.04.05
  • Published : 2013.04.25

Abstract

In this study, we have investigated the correlation of far-field detection sensitivity of surface plasmon resonance (SPR) biosensors with optical signatures associated with the near-field overlap of biomolecules. The results confirm a direct relation between the far-field and near-field parameters, particularly for optical signatures defined in terms of lateral electric field components that are tangential to the interface and thus continuous across the interface. The overall correlation between near-field optical signatures and far-field resonance shift exceeded 97%. The results can be highly useful to evaluate detection sensitivity of SPR biosensors that take advantage of complex structures for localization of surface waves.

본 논문에서는 근접장-분자반응 간의 중첩을 이용한 표면 플라스몬 공명 (SPR) 바이오센서의 측정감도 평가방법을 연구하였다. 전달행렬 방법을 사용하여 다양한 형태의 중첩적분으로 정의된 광학자취 값을 계산하였고, 샌드위치 및 역샌드위치 면역글로뷸린 (IgG) 어세이에 대해서 실험적으로 측정된 수치와 비교하였다. 이론 및 실험적인 결과와의 비교를 통하여 접선 방향의 전기장을 사용한 광학자취의 경우 그 연속성으로 말미암아 가장 높은 상관계수를 얻을 수 있었으며 이때 광학자취와 측정감도 사이에 97% 이상의 높은 상관계수가 존재함을 보았다. 이러한 상관관계는 SPR 바이오센서의 측정 감도에 관한 메커니즘을 분명하게 설명하며, 분자 스케일 감도를 가지는 SPR 바이오센서 개발에 기여하게 될 것이다.

Keywords

References

  1. S. Kubitschko, J. Spinke, T. Brückner, S. Pohl, and N. Oranth, "Sensitivity enhancement of optical immunosensors with nanoparticles," Anal. Biochem. 253, 112-122 (1997). https://doi.org/10.1006/abio.1997.2337
  2. L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, "Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization," J. Am. Chem. Soc. 122, 9071-9077 (2000). https://doi.org/10.1021/ja001215b
  3. S. Moon, Y. Kim, Y. Oh, H. Lee, H. C. Kim, K. Lee, and D. Kim, "Grating-based surface plasmon resonance detection of core-shell nanoparticle mediated DNA hybridization," Biosens. Bioelectron. 32, 141-147 (2012). https://doi.org/10.1016/j.bios.2011.11.047
  4. B. Sepulveda, A. Calle, L. M. Lechuga, and G. Armelles, "Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor," Opt. Lett. 31, 1085-1087 (2006). https://doi.org/10.1364/OL.31.001085
  5. J. Oh, Y. W. Chang, S. Yoo, D. J. Kim, S. Im, Y. J. Park, D. Kim, and K.-H. Yoo, "Carbon nanotube-based dual mode biosensor for electrical and surface plasmon resonance measurements," Nano Lett. 10, 2755-2760 (2010). https://doi.org/10.1021/nl100125a
  6. P. P. Markowicz, W. C. Law, A. Baev, P. N. Prasad, S. Patskovsky, and A. Kabashin, "Phase-sensitive time-modulated surface plasmon resonance polarimetry for wide dynamic range biosensing," Opt. Express 15, 1745-1754 (2007). https://doi.org/10.1364/OE.15.001745
  7. H. P. Ho, W. Yuan, C. L. Wong, S. Y. Wu, Y. K. Suen, S. K. Kong, and C. Lin, "Sensitivity enhancement based on application of multi-pass interferometry in phase-sensitive surface plasmon resonance biosensor," Opt. Commun. 275, 491-496 (2007). https://doi.org/10.1016/j.optcom.2007.03.067
  8. A. R. Halpern, Y. Chen, R. M. Corn, and D. Kim, "Surface plasmon resonance phase imaging measurements of patterned monolayers and DNA adsorption onto microarrays," Anal. Chem. 83, 2801-2806 (2011). https://doi.org/10.1021/ac200157p
  9. K. M. Byun, S. J. Kim, and D. Kim, "Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis," Opt. Express 13, 3737-3742 (2005). https://doi.org/10.1364/OPEX.13.003737
  10. K. M. Byun, S. J. Yoon, D. Kim, and S. J. Kim, "Experimental study of sensitivity enhancement in surface plasmon resonance biosensors by use of periodic metallic nanowires," Opt. Lett. 32, 1902-1904 (2007). https://doi.org/10.1364/OL.32.001902
  11. L. Malic, B. Cui, T. Veres, and M. Tabrizian, "Enhanced surface plasmon resonance imaging detection of DNA hybridization an periodic gold nanoposts," Opt. Lett. 32, 3092-3094 (2007). https://doi.org/10.1364/OL.32.003092
  12. K. Kim, D. J. Kim, S. Moon, D. Kim, and K. M. Byun, "Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings," Nanotechnol. 20, 315501 (2009). https://doi.org/10.1088/0957-4484/20/31/315501
  13. H. Yu, K. Kim, K. Ma, W. Lee, J.-W. Choi, C.-O. Yun, and D. Kim, "Enhanced detection of virus particles by nanoisland-based localized surface plasmon resonance," Biosens. Bioelectron. 41, 249-255 (2013). https://doi.org/10.1016/j.bios.2012.08.031
  14. K. Kim, J.-W. Choi, K. Ma, R. Lee, K.-H. Yoo, C.-O. Yun, and D. Kim, "Nanoislands-based random activation of fluorescence for visualizing endocytotic internalization of adenovirus," Small 6, 1293-1299 (2010). https://doi.org/10.1002/smll.201000058
  15. K. Kim, Y. Oh, W. Lee, and D. Kim, "Plasmonics-based spatially activated light microscopy for super-resolution imaging of molecular fluorescence," Opt. Lett. 35, 3501-3503 (2010). https://doi.org/10.1364/OL.35.003501
  16. K. Kim, J. Yajima, Y. Oh, W. Lee, S. Oowada, T. Nishizaka, and D. Kim, "Nanoscale localization sampling based on nanoantenna arrays for super-resolution imaging of fluorescent monomers on sliding microtubules," Small 8, 892-900 (2012). https://doi.org/10.1002/smll.201101840
  17. K. M. Byun, S. M. Jang, S. J. Kim, and D. Kim, "Effect of target localization on the sensitivity of a localized surface plasmon resonance biosensor based on subwavelength nanostructures," J. Opt. Soc. Am. A 26, 1027-1034 (2009). https://doi.org/10.1364/JOSAA.26.001027
  18. X. D. Hoa, A. G. Kirk, and M. Tabrizian, "Enhanced SPR response from patterned immobilization of surface bioreceptors on nano-gratings," Biosens. Bioelectron. 24, 3043-3048 (2009). https://doi.org/10.1016/j.bios.2009.03.021
  19. K. Ma, D. J. Kim, K. Kim, S. Moon, and D. Kim, "Target-localized nanograting-based surface plasmon resonance detection toward label-free molecular biosensing," IEEE J. Select. Topics Quantum Electron. 16, 1004-1014 (2010). https://doi.org/10.1109/JSTQE.2009.2034123
  20. W. Lee, Y. Oh, and D. Kim, "Enhanced detection sensitivity of surface plasmon resonance biosensing based on co-localized target molecules and evanescent fields," Korean J. Opt. Photon. (Hankook Kwanghak Hoeji) 22, 198-203 (2011). https://doi.org/10.3807/KJOP.2011.22.4.198
  21. C. Hahn, C.-H. Oh, and S. H. Song, "Surface plasmon modes confined in the gap between metal nanowire and dielectric slab," Korean J. Opt. Photon. (Hankook Kwanghak Hoeji) 22, 269-275 (2011). https://doi.org/10.3807/KJOP.2011.22.6.269
  22. Y. Kim, K. Chung, W. Lee, D. H. Kim, and D. Kim, "Nanogap-based dielectric-specific colocalization for highly sensitive surface plasmon resonance detection of biotinstreptavidin interactions," Appl. Phys. Lett. 101, 233701(2012). https://doi.org/10.1063/1.4769108
  23. Y. Oh, W. Lee, and D. Kim, "Co-localization of gold nanoparticle-conjugated DNA hybridization for enhanced surface plasmon detection using nanograting antennas," Opt. Lett. 36, 1353-1355 (2011). https://doi.org/10.1364/OL.36.001353
  24. A. Shalabney and I. Abdulhalim, "Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors," Sens. Actuators A 159, 24-32 (2010). https://doi.org/10.1016/j.sna.2010.02.005
  25. N.-H. Kim, W. K. Jung, and K. M. Byun, "Correlation analysis between plasmon field distribution and sensitivity enhancement in reflection- and transmission-type localized surface plasmon resonance biosensors," Appl. Opt. 50, 4982-4988 (2011). https://doi.org/10.1364/AO.50.004982
  26. W. Lee and D. Kim, "Field-matter integral overlap to estimate the sensitivity of surface plasmon resonance biosensors," J. Opt. Soc. Am. A 29, 1367-1376 (2012).
  27. Y. Ryu, S. Moon, Y. Oh, Y. Kim, and D. Kim, "An experimental correlation study between field-target overlap and sensitivity of surface plasmon resonance biosensors based on sandwiched immunoassays," Opt. Commun. 285, 4626-4631 (2012). https://doi.org/10.1016/j.optcom.2012.07.016
  28. F. Vollmer and S. Arnold, "Whispering-gallery-mode biosensing: labelfree detection down to single molecules," Nature Methods 5, 591-596 (2008). https://doi.org/10.1038/nmeth.1221
  29. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Orlando, FL, USA, 1985).
  30. J. Voros, "The density and refractive index of adsorbing protein layers," Biophys. J. 87, 553-561 (2004). https://doi.org/10.1529/biophysj.103.030072
  31. C. Preininger, H. Clausen-Schaumann, A. Ahluwalia, and D. de Rossi, "Characterization of IgG Langmuir-Blodgett films immobilized on functionalized polymers," Talanta 52, 921-930 (2000). https://doi.org/10.1016/S0039-9140(00)00446-X
  32. A. J. A. El-Haija, "Effective medium approximation for the effective optical constants of a bilayer and a multilayer structure based on the characteristic matrix technique," J. Appl. Phys. 93, 2590-2594 (2003). https://doi.org/10.1063/1.1543229
  33. N. J. Geddes, A. S. Martin, F. Caruso, R. S. Urquhart, D. N. Furlong, J. R. Sambles, K. A. Than, and J. A. Edgar, "Immobilisation of IgG onto gold surfaces and its interaction with a-h-IgG studied by surface plasmon resonance," J. Immunol. Methods 175, 149-160 (1994). https://doi.org/10.1016/0022-1759(94)90358-1
  34. A. K. Ghatak and K. Thyagarajan, Optical Electronics (Cambridge University Press, Cambridge, UK, 1989).

Cited by

  1. Study of the Dependence of the Electric Potential on Surface Plasmon Resonance Characteristics vol.25, pp.2, 2014, https://doi.org/10.3807/KJOP.2014.25.2.095