Abstract
This paper proposes a sampling-based optimization method for electromagnetic design problems, where design sensitivities are obtained from the elaborate surrogate models based on the universal Kriging method and a local window concept. After inserting additional sequential samples to satisfy the certain convergence criterion, the elaborate surrogate model for each true performance function is generated within a relatively small area, called a hyper-cubic local window, with the center of a nominal design. From Jacobian matrices of the local models, the accurate design sensitivity values at the design point of interest are extracted, and so they make it possible to use deterministic search algorithms for fast search of an optimum in design space. The proposed method is applied to a mathematical problem and a loudspeaker design with constraint functions and is compared with the sensitivity-based optimization adopting the finite difference method.