DOI QR코드

DOI QR Code

Modeling and analysis of a cliff-mounted piezoelectric sea-wave energy absorption system

  • Athanassoulis, G.A. (School of Naval Architecture and Marine Engineering, NTUA) ;
  • Mamis, K.I. (School of Naval Architecture and Marine Engineering, NTUA)
  • Received : 2012.09.20
  • Accepted : 2013.03.06
  • Published : 2013.03.25

Abstract

Sea waves induce significant pressures on coastal surfaces, especially on rocky vertical cliffs or breakwater structures (Peregrine 2003). In the present work, this hydrodynamic pressure is considered as the excitation acting on a piezoelectric material sheet, installed on a vertical cliff, and connected to an external electric circuit (on land). The whole hydro/piezo/electric system is modeled in the context of linear wave theory. The piezoelectric elements are assumed to be small plates, possibly of stack configuration, under a specific wiring. They are connected with an external circuit, modeled by a complex impedance, as usually happens in preliminary studies (Liang and Liao 2011). The piezoelectric elements are subjected to thickness-mode vibrations under the influence of incident harmonic water waves. Full, kinematic and dynamic, coupling is implemented along the water-solid interface, using propagation and evanescent modes (Athanassoulis and Belibassakis 1999). For most energetically interesting conditions the long-wave theory is valid, making the effect of evanescent modes negligible, and permitting us to calculate a closed-form solution for the efficiency of the energy harvesting system. It is found that the efficiency is dependent on two dimensionless hydro/piezo/electric parameters, and may become significant (as high as 30 - 50%) for appropriate combinations of parameter values, which, however, corresponds to exotically flexible piezoelectric materials. The existence or the possibility of constructing such kind of materials formulates a question to material scientists.

Keywords

References

  1. Anton, S.R. and Sodano, H.A. (2007), "A review of power harvesting using piezoelectric materials (2003-2006)", Smart Mater. Struct., 16, R1-R21. https://doi.org/10.1088/0964-1726/16/3/R01
  2. APC (2012), information obtained by communication, Company site www.americanpiezo.com .
  3. APC (collective work) (2002), Piezoelectric Ceramics: Principles and Applications, APC International Ltd.
  4. Athanassoulis, G.A. and Belibassakis, K.A. (1999), "A consistent coupled-mode theory for the propagation of small-amplitude water waves over variable bathymetry regions", J. Fluid Mech., 398, 275-301.
  5. Auld B.A. (1969), "Application of microwave concepts to the theory of acoustic fields and waves in solids", IEEE T. Microw. Theory., 17(11), 800-811. https://doi.org/10.1109/TMTT.1969.1127070
  6. Bai, K.J. and Yeung, R. (1974), "Numerical solutions of free-surface and flow problems", Proceedings of the 10th Symp. Naval Hydrodyn. 609-641, Office of Naval Research.
  7. Bar-Cohen Y. (2010), Chapter 8 in (Eds., Uchino, K. et. al.), Advanced piezoelectric materials: Science and technology, Woodhead Publishing.
  8. Bardzokas, D.I. and Filshtinsky, M.L. (2006), Mathematical Methods in Electroelasticity NTUA University Press, Athens.
  9. Barstow, S., Mork. G., Lonseth, L. and Mathisen, J.P. (2009), "WorldWaves wave energy resource assessments from the deep ocean to the coast", Proceedings of the 8th European Wave and Tidal Energy Conference, Uppsala, Sweden.
  10. Barstow, S., Mork, G., Lonseth, L., Schjolberg, P., Athanassoulis, G.A., Belibassakis, K.A., Gerostathis, Th. P., Spaan, G. and Stergiopoulos, Ch. (2003), "WORLDWAVES: High quality coastal and offshore wave data within minutes for any global site", Proceedings of the 22nd Int. Conference on Offshore Mechananics and Arctic Engineering OMAE, Cancun, Mexico.
  11. Bauer, S. and Bauer, F. (2008), Chapter 6 in (Eds. Heywang, W., Lubitz, K. and Wersing, W. et. al.) , Piezoelectricity: Evolution and Future of a Technology, Springer.
  12. Belibassakis, K.A. and Athanassoulis, G.A. (2005), "A coupled-mode model for the hydroelastic analysis of large floating bodies over variable bathymetry regions" J. Fluid Mech., 531, 221-249. https://doi.org/10.1017/S0022112005004003
  13. Bloomfield, P.E. (1994), "Dielectric and piezoelectric properties of stacked and plated PVDF, P(VDF/TrFE) and ceramic/rubber composite thick films", Proceedings of the 9th IEEE Int. Symposium on Applications of Ferroelectrics ISAF.
  14. Brockmann, T. H. (2009), Theory of Adaptive Fiber Composites, Springer.
  15. Carpi, F., De Rossi, D., Kornbluh, R., Pelrine, R.E. and Sommer-Larsen, P. (editors) (2008), Dielectric Elastomers as Electromechanical Transducers, Elsevier.
  16. Cavaleri, L., Athanassoulis, G. A. and Barstow, S. (1999), "EUROWAVES: a user - friendly approach to the evaluation of nearshore wave conditions", Proceedings of the 9th Int. Offshore and Polar Engineering Conference and Exhibition ISOPE, Brest, France.
  17. Cruz , J. (editor) (2008), Ocean Wave Energy: Current Status and Future Prespectives, Springer.
  18. Doring, J., Bovtun, V., Bartusch, J., Beck, U. and Kreutzbruc,k M. (2008), "Cellular polypropylene ferroelectret film: piezoelectric material for non-contact ultrasonic transducers", Proceedings of the 17th World Conference on Nondestructive Testing, Shanghai, China.
  19. Erturk, A. and Inman, D.J. ( 2011), Piezoelectric Energy Harvesting, Wiley.
  20. Guyomar, D., Badel, A., Lefeuvre, E. and Richard, C., (2005), "Toward energy harvesting using active materials and conversion improvement by nonlinear processing", IEEE T. Ultrason., Ferr., 53(4), 584-595.
  21. Haeusler, E. and Stein, L. (1985), "Hydromechanic-Electric Power Converter", Ocean Eng. Environment - Conference Record, San Diego, USA.
  22. Iesan, D. (1990), "Reciprocity, uniqueness and minimum principles in the linear theory of piezoelectricity" Int. J. Eng. Sci., 28(11), 1139-1149. https://doi.org/10.1016/0020-7225(90)90113-W
  23. Jaffe, B., Cook,W. R. Jr. and Jaffe, H. (1971), Piezoelectric Ceramics, Academic Press.
  24. Jamois, E., Molin, B., Remy, F. and Kimmoun, O. (2006), "Nonlinear wave amplification in front of reflective structures", Eur. L. Mech. B-Fluid., 25(5), 565-573. https://doi.org/10.1016/j.euromechflu.2006.01.004
  25. Khaligh, A. and Onar, O.C. (2010), Energy Harvesting: Solar, Wind, and Ocean Energy Conversion Systems, CRC Press.
  26. Khayyer, A. and Gotoh, H. (2009), "Modified moving particle semi-implicit methods for the prediction of 2D wave impact pressure" , Coast. Eng., 56(4), 419-440. https://doi.org/10.1016/j.coastaleng.2008.10.004
  27. Koola, P.M. and Ibragimov, A. (2003), "The dynamics of wave carpet - a novel deep water wave energy design", Proceedings of the Oceans 2003 , San Diego USA.
  28. Kreisel, G. (1949), "Surface waves", Q. Appl. Math., 7(1), 21-44. https://doi.org/10.1090/qam/31924
  29. Lefeuvre, E., Lallart, M., Richard, C. and Guyomar, D. (2010), Chapter 9 in (Eds., Gomez, E.S. et. al.), Piezoelectric Ceramics, SCIYO. (Free online edition available at www.sciyo.com).
  30. Lenoir, M. and Tounsi, A. (1988), "The Localized Finite Element Method and its Application to the Two- Dimensional Sea-Keeping Problem", SIAM J. Numer. Anal., 25(4), 729-752. https://doi.org/10.1137/0725044
  31. Liang, J. and Liao, W.H. (2011), "Energy flow in piezoelectric energy harvesting systems", Smart Mater. Struct., 20(1), 015005. https://doi.org/10.1088/0964-1726/20/1/015005
  32. Mei, C.C., Stiassnie, M. and Yue. D.K.P. (2005), Theory and Applications of Ocean Surface Waves: Part I, Linear Aspects; Part II, Nonlinear Aspects, World Scientific.
  33. Meitzler, A.H. (chair) et. al. (1987), IEEE Standard on Piezoelectricity, IEEE Inc.
  34. Molin, B., Kimmoun, O., Liu. Y., Remy. F. and Bingham. H.B. (2010), "Experimental and numerical study of the wave run-up along a vertical plate" J. Fluid Mech., 654, 363-386. https://doi.org/10.1017/S0022112010000637
  35. Molin, B., Remy, F., Kimmoun, O. and Jamois, E. (2005), "The role of tertiary wave interactions in wave- body problems", J. Fluid Mech., 528, 323-354. https://doi.org/10.1017/S002211200500340X
  36. Murray, R. and Rastegar, J. (2009), "Novel two - stage piezoelectric - based ocean wave energy harvesters for moored or unmoored buoys", Active and Passive Smart Structures and Integrated Systems SPIE, 7288, 72880E (2009), San Diego USA.
  37. Myers, R., Vickers, M., Kim, H. and Priya, S. (2007). "Small scale windmill", Appl. Phys. Lett., 90(5), 3.
  38. Mørk, G., Bastow, S., Kabuth, A. and Pontes, M.T. (2010), "Assesing the global wave energy potential", Proceedings of the 29th Int. Conference on Osean, Offshore Mechanics and Arctic Engineering OMAE, Shanghai, China.
  39. Newnham , R.E. (2005), Properties of Materials, Oxford University Press.
  40. Parton, V.Z. and Kudryavtsev, B.A. (1988), Electromagnetoelasticity: Piezoelectrics and Electrically Conductive Solids, Gordon and Breach Science Publishers.
  41. Peregrine, D.H. (2003), "Water wave impact on walls" Annu. Rev. Fluid Mech., 35(1), 23-43. https://doi.org/10.1146/annurev.fluid.35.101101.161153
  42. Pobering, S. and Schwesinger, N. (2004) , "A novel hydropower harvesting device", Proceedings of the 2004 Int. Conference on MEMS, NANO and Smart Systems, ICMENS 2004, Banff, Canada.
  43. Pontes, M.T., Athanassoulis, G.A., Bastow, S., Cavaleri, L., Holmes, B., Mollison, D. and Oliveira-Pires, H. (1996), "An atlas of the wave energy resource in Europe", J. Offshore Mech. Arct.,118(4), 307-309. https://doi.org/10.1115/1.2833921
  44. Pontes, M.T., Athanassoulis, G.A., Bastow, S., Cavaleri, L., Holmes, B., Mollison, D. and Oliveira-Pires, H. (1995), "An Atlas of the Wave Energy Resource in Europe", Proceedings of the 14th Int. Offshore Mechanics and Arctic Engineering Conference, OMAE, Copenhagen, Denmark.
  45. Preumont, A. (2011), Vibration Control of Active Structures, Springer.
  46. Priya, S. (2007), "Advances in energy harvesting using low profile piezoelectric transducers", J. Electroceram., 19, 167-184. https://doi.org/10.1007/s10832-007-9043-4
  47. Priya, S., Chen, C.T., Fye, D. and Zahnd, J. (2005). "Piezoelectric windmill: A novel solution to remote sensing", Jpn. J. Appl. Phys: 2, 44(1-7), L104-L107. https://doi.org/10.1143/JJAP.44.L104
  48. Priya, S. and Inman, D. J. (2009), Energy Harvesting Technologies, Springer.
  49. Sherman, Ch. H. and Butler, J. L. (2007), Transducers and Arrays for Underwater Sound, Springer.
  50. Shu, Y.C. and Lien, I.C. (2006), "Analysis of power output for piezoelectric energy harvesting systems", Smart Mater. Struct., 15, 1499-1512. https://doi.org/10.1088/0964-1726/15/6/001
  51. Smith, W.A. and Auld, B.A. (1991), "Modeling 1 - 3 composite piezoelectrics: thickness-mode oscillations", IEEE T. Ultrason., Ferr., 38(1), 40-47. https://doi.org/10.1109/58.67833
  52. Sodano, H.A., Park, G. and Inman, D.J. (2004), "A review of power harvesting using piezoelectric materials", Shock Vib., 36 (3), 197-206. https://doi.org/10.1177/0583102404043275
  53. Splitt, G. (1996), "Piezocomposite transducers - a milestone for ultrasonic testing", electronic version at http://www.ndt.net/article/splitt/splitt_e.htm of the nondestructive testing (NDT) database.
  54. Stoker, J.J. (1957), Water Waves, Interscience.
  55. Taylor, G.W., Burns, J.R., Kammann, S.M., Powers, W.B. and Welsh T.R. (2001), "The energy harvesting eel: a small subsurface ocean/river power generator", IEEE J. Ocean. Eng., 26, 539-547. https://doi.org/10.1109/48.972090
  56. Taylor, G.W. and Burns, J.R. (1983), "Hydro-piezoelectric power generation from ocean waves", Ferroelectrics, 49(1), 101-101. https://doi.org/10.1080/00150198308244672
  57. Uchino, K. (2010), Chapter 9 in (Eds. Uchino K. et. al.), Advanced piezoelectric materials: Science and technology, Woodhead Publishing.
  58. Yang ,J. (2006a), Analysis of Piezoelectric Devices,World Scientific.
  59. Yang, J. (2006b), The Mechanics of Piezoelectric Structures,World Scientific.
  60. Wehausen, J. N. and Laitone, E.V. (1960), Surface Waves, Handbuch der Physik, Springer.

Cited by

  1. Experimental sea wave energy extractor based on piezoelectric Ericsson cycles 2018, https://doi.org/10.1177/1045389X17730917
  2. Piezoelectric devices for ocean energy: a brief survey vol.1, pp.1, 2015, https://doi.org/10.1007/s40722-014-0008-9
  3. Modeling and performance analysis of duck-shaped triboelectric and electromagnetic generators for water wave energy harvesting vol.41, pp.14, 2017, https://doi.org/10.1002/er.3811
  4. Performance Analysis for a Wave Energy Harvester of Piezoelectric Cantilever Beam vol.83, pp.None, 2018, https://doi.org/10.2112/si83-161.1
  5. Electroactive polymers for ocean kinetic energy harvesting: literature review and research needs vol.4, pp.4, 2013, https://doi.org/10.1007/s40722-018-0121-2
  6. Performance of a plate‐wave energy converter integrated in a floating breakwater vol.15, pp.14, 2021, https://doi.org/10.1049/rpg2.12230