References
- Aboudi, J. (2001), "Micromechanical analysis of fully coupled electro-magneto-thermo-elastic multiphase composites", Smart Mater. Struct., 10(5), 867-877. https://doi.org/10.1088/0964-1726/10/5/303
- Abreu, de G.L.C.M., Ribeiro, J.F. and Steffen Jr., V. (2004), "Finite element modeling of a plate with localized piezoelectric sensors and actuators", J. Brazilian Soc. Mech. Sci. Eng., 26, 117-128. https://doi.org/10.1590/S1678-58782004000200002
- Bayrashev, A., Robins, W. P. and Ziaie, B. (2004), "Low frequency wireless powering of microsystems using piezoelectric-magnetostrictive laminate composite", Sensor. Actuat. A, 114(2-3), 244-249. https://doi.org/10.1016/j.sna.2004.01.007
- Benveniste, Y. (1995), "Magnetoelectric effect in fibrous composites with piezoelectric and piezomagnetic phases", Phys. Rev. - B, 51(22), 16424-16427. https://doi.org/10.1103/PhysRevB.51.16424
- Biju, B., Ganesan, N. and Shankar, K. (2011), "Dynamic response of multiphase magneto-electro-elastic sensors using 3D magnetic vector potential approach", IEEE Sens. J., 11(9), 2169 - 2176. https://doi.org/10.1109/JSEN.2011.2112346
- Buchanan, G.R. (2004), "Layered versus multiphase magneto-electro-elastic composites", Composites: Part B, 35, 413-420. https://doi.org/10.1016/j.compositesb.2003.12.002
- Duc, N.H. and Giang, D.T.H. (2008), "Magnetic sensors based on piezoelectric-magnetostrictive composites", J. Alloy. Compd.,449(1-2), 214-218. https://doi.org/10.1016/j.jallcom.2006.01.121
- Nan, C.W., Bichurin, M.I., Dong, S.X., Viehland, D. and Srinivasan, G. (2008), "Multiferroic magnetoelectric composites: Historical perspective, status, and future directions" J. Applied Phys., 103(3), 031101. https://doi.org/10.1063/1.2836410
- Challagulla, K.S. and Georgiades, A.V. (2011), "Micromechanical analysis of magneto-electro-thermoelastic composite materials with applications to multilayered structures", Int. J. Eng. Sci., 49(1), 85-104. https://doi.org/10.1016/j.ijengsci.2010.06.025
- Chen, J., Pan, E. and Chen, H. (2007), "Wave propagation in magneto-electro-elastic multilayered plates", Int. J. Solids Struct., 44(3-4), 1073-1085. https://doi.org/10.1016/j.ijsolstr.2006.06.003
- Gao, C.F. and Noda, N (2004), "Thermal-induced interfacial cracking on magnetoelectroelastic materials", Int. J. Eng. Sci., 42(13-14), 1347-1360. https://doi.org/10.1016/j.ijengsci.2004.03.005
- Gornandt, A. and Gabbert, U. (2002), "Finite element analysis of thermopiezoelectric smart structures", Acta Mechanica, 154(1-4), 129 140. https://doi.org/10.1007/BF01170703
- Huang, D.J., Ding, H.J. and Chen, W.Q. (2010), "Static analysis of anisotropic functionally graded magneto-electro-elastic beams subjected to arbitrary loading", European J. Mech. A/Solids, 29(3), 356-369. https://doi.org/10.1016/j.euromechsol.2009.12.002
- Kapuria, S. and Achary, G.G.S. (2005), "Exact 3D piezoelasticity solution of hybrid cross-ply plates with damping under harmonic mechanical loads", J. Sound Vib., 282(3-5), 617-634. https://doi.org/10.1016/j.jsv.2004.03.030
- Kim, J.Y. (2011), "Micromechanical analysis of effective properties of magneto-electro-thermo-elastic multilayer composites", Int. J. Eng. Sci., 49(9), 1001-1018. https://doi.org/10.1016/j.ijengsci.2011.05.012
- Kumaravel, A., Ganesan, N. and Sethuraman, R. (2007), "Steady-state analysis of a three-layered electro-magneto-elastic strip in a thermal environment", Smart Mater. Struct., 16(2), 282-295. https://doi.org/10.1088/0964-1726/16/2/006
- Ootao, Y. and Ishihara, M. (2011)," Exact solution of transient thermal stress problem of the multilayered magneto-electro-thermoelastic hallow cylinder", J. Solid Mech. Mater. Eng., 5(2), 90-103. https://doi.org/10.1299/jmmp.5.90
- Pan, E. (2001), "Exact solution for simply supported and multilayered magneto-electro-elastic plates", J. Appl. Mech.T.- ASME, 68, 608-618. https://doi.org/10.1115/1.1380385
- Pan, E. and Han, F. (2005), "Exact solution for functionally graded and layered magneto-electro-elastic plates", Int. J. Eng. Sci., 43(3-4), 321-339. https://doi.org/10.1016/j.ijengsci.2004.09.006
- Sebald, G., Guyomar, D. and Agbossou, A. (2009), "On thermoelectric and pyroelectric energy harvesting", Smart Mater. Struct.,18, 125006. https://doi.org/10.1088/0964-1726/18/12/125006
- Sunar, M., Al-Garni, A.Z., Ali, M.H. and Kahraman, R. (2002), "Finite element modeling of thermopiezomagnetic smart structures", AIAA J., 40, 1846-1851. https://doi.org/10.2514/2.1862
- Vopsaroiu, M., Blackburn, J. and Cain, M.G. (2007), "A new magnetic recording read head technology based on the magnetoelectric effect", J. Phys. D. Appl. Phys., 40(17), 5027-5033. https://doi.org/10.1088/0022-3727/40/17/003
- Wu, C.P., Chiu, K.H. and Jiang, R.Y. (2012), "A meshless collocation method for the coupled analysis of functionally graded piezo-thermo-elastic shells and plates under thermal loads", Int. J. Eng. Sci., 56, 29-48. https://doi.org/10.1016/j.ijengsci.2012.03.001
- Wu, C.P., Chen, S.J. and Chiu, K.H. (2010), "Three static behavior of functionally graded magneto-electro-elastic plates using the modified Pagano method", Mech. Res. Commun., 37, 54-60. https://doi.org/10.1016/j.mechrescom.2009.10.003
Cited by
- Micromechanical modeling of thin composite and reinforced magnetoelectric plates – Effective elastic, piezoelectric and piezomagnetic coefficients vol.172, 2017, https://doi.org/10.1016/j.compstruct.2017.03.073
- On 3D problem of vertically uniform heat flow disturbed by an anticrack in a transversely isotropic magnetoelectroelastic space vol.69, 2018, https://doi.org/10.1016/j.euromechsol.2018.01.001
- Edge wave propagation in an Electro-Magneto-Thermoelastic homogeneous plate subjected to stress vol.53, pp.6, 2015, https://doi.org/10.12989/sem.2015.53.6.1201
- Static studies of stepped functionally graded magneto-electro-elastic beam subjected to different thermal loads vol.163, 2017, https://doi.org/10.1016/j.compstruct.2016.12.040
- Modeling of smart materials with thermal effects: Dynamic and quasi-static evolution vol.25, pp.14, 2015, https://doi.org/10.1142/S0218202515500578
- Influence of coupled fields on free vibration and static behavior of functionally graded magneto-electro-thermo-elastic plate 2017, https://doi.org/10.1177/1045389X17740739
- Solutions for the magneto-electro-elastic plate using the scaled boundary finite element method vol.68, 2016, https://doi.org/10.1016/j.enganabound.2016.04.005
- Temperature-related effective properties and exact relations for thermo-magneto-electro-elastic fibrous composites vol.69, pp.9, 2015, https://doi.org/10.1016/j.camwa.2015.03.005
- Micromechanical analysis of piezo-magneto-thermo-elastic T-ribbed and Π-ribbed plates 2018, https://doi.org/10.1080/15376494.2017.1308602
- Investigation of the effect of BaTiO 3 /CoFe 2 O 4 particle arrangement on the static response of magneto-electro-thermo-elastic plates vol.185, 2018, https://doi.org/10.1016/j.compstruct.2017.10.073
- Dispersion of torsional surface wave in an intermediate vertical prestressed inhomogeneous layer lying between heterogeneous half spaces vol.23, pp.19, 2017, https://doi.org/10.1177/1077546316628706
- Micromechanical modeling of thin composite and reinforced magnetoelectric plates – Effective electrical, magnetic, thermal and product properties vol.113, 2017, https://doi.org/10.1016/j.compositesb.2017.01.029
- Hygrothermal analysis of magneto-electro-elastic plate using 3D finite element analysis vol.180, 2017, https://doi.org/10.1016/j.compstruct.2017.08.015
- Calculation of effective parameters of thermoelectromagnetoelastic layered media vol.62, pp.7, 2017, https://doi.org/10.1134/S1063784217070234
- Static analysis of stepped functionally graded magneto-electro-elastic plates in thermal environment: A finite element study vol.178, 2017, https://doi.org/10.1016/j.compstruct.2017.06.068
- micro-topological textures on the coupled static behaviour of magneto-electro-thermo-elastic beams in different thermal environment vol.5, pp.12, 2018, https://doi.org/10.1088/2053-1591/aae0c8
- Hygrothermal coupling analysis of magneto-electroelastic beams using finite element methods vol.41, pp.8, 2018, https://doi.org/10.1080/01495739.2018.1447856
- A finite element based assessment of static behavior of multiphase magneto-electro-elastic beams under different thermal loading vol.62, pp.5, 2017, https://doi.org/10.12989/sem.2017.62.5.519
- Static behavior of thermally loaded multilayered Magneto-Electro-Elastic beam vol.63, pp.4, 2013, https://doi.org/10.12989/sem.2017.63.4.481
- Multiphysics response of magneto-electro-elastic beams in thermo-mechanical environment vol.6, pp.3, 2013, https://doi.org/10.12989/csm.2017.6.3.351
- An element free Galerkin method for static behavior of a magneto-electro-elastic beam in thermal environments vol.28, pp.11, 2019, https://doi.org/10.1088/1361-665x/ab47c1
- Thermal response analysis of multi-layered magneto-electro-thermo-elastic plates using higher order shear deformation theory vol.73, pp.6, 2013, https://doi.org/10.12989/sem.2020.73.6.667
- Trigonometric Solution for the Bending Analysis of Magneto-Electro-Elastic Strain Gradient Nonlocal Nanoplates in Hygro-Thermal Environment vol.9, pp.5, 2013, https://doi.org/10.3390/math9050567
- Computational evaluation of electro-magnetic circuits’ effect on the coupled response of multifunctional magneto-electro-elastic composites plates exposed to hygrothermal fields vol.235, pp.15, 2013, https://doi.org/10.1177/0954406220954485
- Mathematical modeling of fully coupled reinforced Magneto-Electro-Thermo-Mechanical effective properties based on conditioned micromechanics vol.280, pp.None, 2022, https://doi.org/10.1016/j.compstruct.2021.114896