DOI QR코드

DOI QR Code

Pyroelectric and pyromagnetic effects on behavior of magneto-electro-elastic plate

  • Kondaiah, P. (Machine Design Section, Department of Mechanical Engineering, Indian Institute of Technology Madras) ;
  • Shankar, K. (Machine Design Section, Department of Mechanical Engineering, Indian Institute of Technology Madras) ;
  • Ganesan, N. (Machine Design Section, Department of Mechanical Engineering, Indian Institute of Technology Madras)
  • Received : 2012.09.21
  • Accepted : 2013.02.06
  • Published : 2013.03.25

Abstract

Under thermal environment, Magneto-Electro-Elastic (MEE) material exhibits pyroelectric and pyromagnetic effects which can be used for enhancing the performance of MEE sensors. Recently studies have been published on material constants such as pyroelectric constant and pyromagnetic constant for magneto-electro-thermo-elastic smart composite. Hence, the main aim of this paper is to study the pyroelectric and pyromagnetic effects on behavior of MEE plate under different boundary conditions subjected to uniform temperature. A numerical study is carried out using eight noded brick finite element under uniform temperature rise of 100 K. The study focused on the pyroelectric and pyromagnetic effects on system parameters like displacements, thermal stresses, electric potential, magnetic potential, electric displacements and magnetic flux densities. It is found that, there is a significant increase in electric potential due to the pyroelectric and pyromagnetic effects. These effects are visible on electric and magnetic potentials when CFFC and FCFC boundary conditions are applied. Additionally, the pyroelectric and pyromagnetic effects at free edge is dominant (nearly thrice the value in CFFC in comparison with FCFC) than at middle of the plate. This study is a significant contribution to sensor applications.

Keywords

References

  1. Aboudi, J. (2001), "Micromechanical analysis of fully coupled electro-magneto-thermo-elastic multiphase composites", Smart Mater. Struct., 10(5), 867-877. https://doi.org/10.1088/0964-1726/10/5/303
  2. Abreu, de G.L.C.M., Ribeiro, J.F. and Steffen Jr., V. (2004), "Finite element modeling of a plate with localized piezoelectric sensors and actuators", J. Brazilian Soc. Mech. Sci. Eng., 26, 117-128. https://doi.org/10.1590/S1678-58782004000200002
  3. Bayrashev, A., Robins, W. P. and Ziaie, B. (2004), "Low frequency wireless powering of microsystems using piezoelectric-magnetostrictive laminate composite", Sensor. Actuat. A, 114(2-3), 244-249. https://doi.org/10.1016/j.sna.2004.01.007
  4. Benveniste, Y. (1995), "Magnetoelectric effect in fibrous composites with piezoelectric and piezomagnetic phases", Phys. Rev. - B, 51(22), 16424-16427. https://doi.org/10.1103/PhysRevB.51.16424
  5. Biju, B., Ganesan, N. and Shankar, K. (2011), "Dynamic response of multiphase magneto-electro-elastic sensors using 3D magnetic vector potential approach", IEEE Sens. J., 11(9), 2169 - 2176. https://doi.org/10.1109/JSEN.2011.2112346
  6. Buchanan, G.R. (2004), "Layered versus multiphase magneto-electro-elastic composites", Composites: Part B, 35, 413-420. https://doi.org/10.1016/j.compositesb.2003.12.002
  7. Duc, N.H. and Giang, D.T.H. (2008), "Magnetic sensors based on piezoelectric-magnetostrictive composites", J. Alloy. Compd.,449(1-2), 214-218. https://doi.org/10.1016/j.jallcom.2006.01.121
  8. Nan, C.W., Bichurin, M.I., Dong, S.X., Viehland, D. and Srinivasan, G. (2008), "Multiferroic magnetoelectric composites: Historical perspective, status, and future directions" J. Applied Phys., 103(3), 031101. https://doi.org/10.1063/1.2836410
  9. Challagulla, K.S. and Georgiades, A.V. (2011), "Micromechanical analysis of magneto-electro-thermoelastic composite materials with applications to multilayered structures", Int. J. Eng. Sci., 49(1), 85-104. https://doi.org/10.1016/j.ijengsci.2010.06.025
  10. Chen, J., Pan, E. and Chen, H. (2007), "Wave propagation in magneto-electro-elastic multilayered plates", Int. J. Solids Struct., 44(3-4), 1073-1085. https://doi.org/10.1016/j.ijsolstr.2006.06.003
  11. Gao, C.F. and Noda, N (2004), "Thermal-induced interfacial cracking on magnetoelectroelastic materials", Int. J. Eng. Sci., 42(13-14), 1347-1360. https://doi.org/10.1016/j.ijengsci.2004.03.005
  12. Gornandt, A. and Gabbert, U. (2002), "Finite element analysis of thermopiezoelectric smart structures", Acta Mechanica, 154(1-4), 129 140. https://doi.org/10.1007/BF01170703
  13. Huang, D.J., Ding, H.J. and Chen, W.Q. (2010), "Static analysis of anisotropic functionally graded magneto-electro-elastic beams subjected to arbitrary loading", European J. Mech. A/Solids, 29(3), 356-369. https://doi.org/10.1016/j.euromechsol.2009.12.002
  14. Kapuria, S. and Achary, G.G.S. (2005), "Exact 3D piezoelasticity solution of hybrid cross-ply plates with damping under harmonic mechanical loads", J. Sound Vib., 282(3-5), 617-634. https://doi.org/10.1016/j.jsv.2004.03.030
  15. Kim, J.Y. (2011), "Micromechanical analysis of effective properties of magneto-electro-thermo-elastic multilayer composites", Int. J. Eng. Sci., 49(9), 1001-1018. https://doi.org/10.1016/j.ijengsci.2011.05.012
  16. Kumaravel, A., Ganesan, N. and Sethuraman, R. (2007), "Steady-state analysis of a three-layered electro-magneto-elastic strip in a thermal environment", Smart Mater. Struct., 16(2), 282-295. https://doi.org/10.1088/0964-1726/16/2/006
  17. Ootao, Y. and Ishihara, M. (2011)," Exact solution of transient thermal stress problem of the multilayered magneto-electro-thermoelastic hallow cylinder", J. Solid Mech. Mater. Eng., 5(2), 90-103. https://doi.org/10.1299/jmmp.5.90
  18. Pan, E. (2001), "Exact solution for simply supported and multilayered magneto-electro-elastic plates", J. Appl. Mech.T.- ASME, 68, 608-618. https://doi.org/10.1115/1.1380385
  19. Pan, E. and Han, F. (2005), "Exact solution for functionally graded and layered magneto-electro-elastic plates", Int. J. Eng. Sci., 43(3-4), 321-339. https://doi.org/10.1016/j.ijengsci.2004.09.006
  20. Sebald, G., Guyomar, D. and Agbossou, A. (2009), "On thermoelectric and pyroelectric energy harvesting", Smart Mater. Struct.,18, 125006. https://doi.org/10.1088/0964-1726/18/12/125006
  21. Sunar, M., Al-Garni, A.Z., Ali, M.H. and Kahraman, R. (2002), "Finite element modeling of thermopiezomagnetic smart structures", AIAA J., 40, 1846-1851. https://doi.org/10.2514/2.1862
  22. Vopsaroiu, M., Blackburn, J. and Cain, M.G. (2007), "A new magnetic recording read head technology based on the magnetoelectric effect", J. Phys. D. Appl. Phys., 40(17), 5027-5033. https://doi.org/10.1088/0022-3727/40/17/003
  23. Wu, C.P., Chiu, K.H. and Jiang, R.Y. (2012), "A meshless collocation method for the coupled analysis of functionally graded piezo-thermo-elastic shells and plates under thermal loads", Int. J. Eng. Sci., 56, 29-48. https://doi.org/10.1016/j.ijengsci.2012.03.001
  24. Wu, C.P., Chen, S.J. and Chiu, K.H. (2010), "Three static behavior of functionally graded magneto-electro-elastic plates using the modified Pagano method", Mech. Res. Commun., 37, 54-60. https://doi.org/10.1016/j.mechrescom.2009.10.003

Cited by

  1. Micromechanical modeling of thin composite and reinforced magnetoelectric plates – Effective elastic, piezoelectric and piezomagnetic coefficients vol.172, 2017, https://doi.org/10.1016/j.compstruct.2017.03.073
  2. On 3D problem of vertically uniform heat flow disturbed by an anticrack in a transversely isotropic magnetoelectroelastic space vol.69, 2018, https://doi.org/10.1016/j.euromechsol.2018.01.001
  3. Edge wave propagation in an Electro-Magneto-Thermoelastic homogeneous plate subjected to stress vol.53, pp.6, 2015, https://doi.org/10.12989/sem.2015.53.6.1201
  4. Static studies of stepped functionally graded magneto-electro-elastic beam subjected to different thermal loads vol.163, 2017, https://doi.org/10.1016/j.compstruct.2016.12.040
  5. Modeling of smart materials with thermal effects: Dynamic and quasi-static evolution vol.25, pp.14, 2015, https://doi.org/10.1142/S0218202515500578
  6. Influence of coupled fields on free vibration and static behavior of functionally graded magneto-electro-thermo-elastic plate 2017, https://doi.org/10.1177/1045389X17740739
  7. Solutions for the magneto-electro-elastic plate using the scaled boundary finite element method vol.68, 2016, https://doi.org/10.1016/j.enganabound.2016.04.005
  8. Temperature-related effective properties and exact relations for thermo-magneto-electro-elastic fibrous composites vol.69, pp.9, 2015, https://doi.org/10.1016/j.camwa.2015.03.005
  9. Micromechanical analysis of piezo-magneto-thermo-elastic T-ribbed and Π-ribbed plates 2018, https://doi.org/10.1080/15376494.2017.1308602
  10. Investigation of the effect of BaTiO 3 /CoFe 2 O 4 particle arrangement on the static response of magneto-electro-thermo-elastic plates vol.185, 2018, https://doi.org/10.1016/j.compstruct.2017.10.073
  11. Dispersion of torsional surface wave in an intermediate vertical prestressed inhomogeneous layer lying between heterogeneous half spaces vol.23, pp.19, 2017, https://doi.org/10.1177/1077546316628706
  12. Micromechanical modeling of thin composite and reinforced magnetoelectric plates – Effective electrical, magnetic, thermal and product properties vol.113, 2017, https://doi.org/10.1016/j.compositesb.2017.01.029
  13. Hygrothermal analysis of magneto-electro-elastic plate using 3D finite element analysis vol.180, 2017, https://doi.org/10.1016/j.compstruct.2017.08.015
  14. Calculation of effective parameters of thermoelectromagnetoelastic layered media vol.62, pp.7, 2017, https://doi.org/10.1134/S1063784217070234
  15. Static analysis of stepped functionally graded magneto-electro-elastic plates in thermal environment: A finite element study vol.178, 2017, https://doi.org/10.1016/j.compstruct.2017.06.068
  16. micro-topological textures on the coupled static behaviour of magneto-electro-thermo-elastic beams in different thermal environment vol.5, pp.12, 2018, https://doi.org/10.1088/2053-1591/aae0c8
  17. Hygrothermal coupling analysis of magneto-electroelastic beams using finite element methods vol.41, pp.8, 2018, https://doi.org/10.1080/01495739.2018.1447856
  18. A finite element based assessment of static behavior of multiphase magneto-electro-elastic beams under different thermal loading vol.62, pp.5, 2017, https://doi.org/10.12989/sem.2017.62.5.519
  19. Static behavior of thermally loaded multilayered Magneto-Electro-Elastic beam vol.63, pp.4, 2013, https://doi.org/10.12989/sem.2017.63.4.481
  20. Multiphysics response of magneto-electro-elastic beams in thermo-mechanical environment vol.6, pp.3, 2013, https://doi.org/10.12989/csm.2017.6.3.351
  21. An element free Galerkin method for static behavior of a magneto-electro-elastic beam in thermal environments vol.28, pp.11, 2019, https://doi.org/10.1088/1361-665x/ab47c1
  22. Thermal response analysis of multi-layered magneto-electro-thermo-elastic plates using higher order shear deformation theory vol.73, pp.6, 2013, https://doi.org/10.12989/sem.2020.73.6.667
  23. Trigonometric Solution for the Bending Analysis of Magneto-Electro-Elastic Strain Gradient Nonlocal Nanoplates in Hygro-Thermal Environment vol.9, pp.5, 2013, https://doi.org/10.3390/math9050567
  24. Computational evaluation of electro-magnetic circuits’ effect on the coupled response of multifunctional magneto-electro-elastic composites plates exposed to hygrothermal fields vol.235, pp.15, 2013, https://doi.org/10.1177/0954406220954485
  25. Mathematical modeling of fully coupled reinforced Magneto-Electro-Thermo-Mechanical effective properties based on conditioned micromechanics vol.280, pp.None, 2022, https://doi.org/10.1016/j.compstruct.2021.114896