DOI QR코드

DOI QR Code

Cable layout design of two way prestressed concrete slabs using FEM

  • Khan, Ahmad Ali (Dept. Civil Engg., MANIT) ;
  • Pathak, K.K. (CS&PM Group, AMPRI (CSIR)) ;
  • Dindorkar, N. (Dept. Civil Engg., MANIT)
  • 투고 : 2010.10.12
  • 심사 : 2012.04.25
  • 발행 : 2013.01.25

초록

In this paper, a new approach for cable layout design of pre-stressed concrete slabs is presented. To account the cable profile accurately, it is modelled by B-spline. Using the convex hull property of the B-spline, an efficient algorithm has been developed to obtain the cable layout for pre-stressed concrete slabs. For finite element computations, tendon and concrete are modelled by 3 noded bar and 20 noded brick elements respectively. The cable concrete interactions are precisely accounted using vector calculus formulae. Using the proposed technique a two way prestressed concrete slab has been successfully designed considering several design criteria.

키워드

참고문헌

  1. Barakat, S., Kallas, N. and Taha, M.Q. (2003), "Single objective reliability-based optimization of prestressed concrete beams", Comput. Struct., 81(26-27), 2501-2512. https://doi.org/10.1016/S0045-7949(03)00305-5
  2. Brandt, A.M. (1989), Foundations of optimum design in civil engineering, Nijhoff Publishers.
  3. Braibant, V., Fleury, C. and Beckers, P. (1983), Shape optimal design: An approach matching CAD and optimization concept, Report SA-109, Aerospace Laboratory of University of Liege, Belgium.
  4. Buragohian, D.N. and Mukherjee, A. (1993), PARCS -A pre-stressed and reinforced concrete shell element for analysis of containment structures, Transactions of 12th SmiRT International Conference, B, Stuttgart, Germany.
  5. Buragohian, D.N. and Siddhyae, U.R. (1997), "Finite element analysis of pre stressed concrete box girder bridges", J. Struct. Eng. Div., 24(3), 135-141.
  6. Diep, B.K. and Umehara, H. (2002), "Non-linear analysis of externally prestressed concrete beam", J. Struct. Eng.-ASCE, 2, 85-96.
  7. Elwi, A. and Hrudey, T. (1989), "Finite element model for curved cable embedded reinforcement", J. Eng. Mech.-ASCE, 115(4), 740-754. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:4(740)
  8. Figueiras, J.A. and Povoas, R.H.C.F. (1994), "Modeling of pre-stressing in non -linear analysis of concrete structures", Comput. Struct., 53(1),173-187. https://doi.org/10.1016/0045-7949(94)90140-6
  9. Ghallab, A. and Beeby, A.W. (2005), "Factors affecting the external prestressing stress in externally strengthened prestressed concrete beams", Cement Concrete Comp., 27(9-10), 945-957. https://doi.org/10.1016/j.cemconcomp.2005.05.003
  10. Ghoddosian, A. (1998), Improved zero order techniques for structural shape optimization using FEM, PhD Dissertation, Applied Mechanics Dept. IIT Delhi.
  11. Gordon, W.J. and Riesenfeld, R.F. (1974), Computer aided geometric design, Academic Press, London.
  12. Greunen, J.V. and Scordelis, A.C. (1983), "Nonlinear analysis of pre-stressed concrete slabs", J. Struct. Eng. Div.-ASCE, 109(7), 1742-1760. https://doi.org/10.1061/(ASCE)0733-9445(1983)109:7(1742)
  13. Ibrahim, A.M. and Mubarak, H.M. (2009), "Finite element modelling of continuous reinforced concrete beam with external prestressed", Euro. J. Sci. Res., 30(1), 177-186.
  14. Jirousek, J., Bouberguig, A. and Saygun, A. (1979), "A macro element analysis of pre-stressed curved box girder bridges", Comput. Struct., 10(3), 467-482. https://doi.org/10.1016/0045-7949(79)90022-1
  15. Kang, Y.J. and Scordelis, A.C. (1990), "Non-linear analysis of pre-stressed concrete frames", J. Struct. Eng. Div.-ASCE, 106(2), 445-462.
  16. Kirsch, U. (1973), "Optimized prestressing by linear programming", Int. J. Numer. Meth. Eng., 7(2), 125-136. https://doi.org/10.1002/nme.1620070204
  17. Kirsch, U. (1993), Structural optimization, Springer-Verlog, Berlin.
  18. Kuyucular, A. (1991), "Prestressing optimization of concrete slabs", J. Struct. Eng. Div.-ASCE, 117(1), 235-254. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:1(235)
  19. Lounis, Z. and Cohn, M.Z. (1993), "Multiobjective optimization of prestressed concrete structures", J. Struct. Eng. Div.-ASCE, 119(3), 794-808. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:3(794)
  20. Lin, T.Y. and Burns, N.H. (1982), Design of pre-stressed concrete structures, Third Edition, John Wiley and Sons. Inc., New York.
  21. Madhavi, T.C., Sekar, M. and Paramasivam, V. (2009), "Efficient composite layered finite element modelling for prestressed concrete box girders", IE(I) J.-CV, 90(MAI),14-21.
  22. Pandey, A.K., Kumar, R. and Trikha, D.N. (1997), "Finite element analysis of pre-stressed concrete containment structures", Proceedings of First National Conference on Computer Aided Structural Analysis and Design, Hyderabad, India, 373-379.
  23. Pathak, K.K. and Sehgal, D.K. (2004), "Analysis of prestress concrete beams using different cable models", J. Bridge Struct. Eng., 33(2004), 29-40.
  24. Pourazady, M. and Fu, Z. (1996), "An integrated approach to structural shape optimization", Comput. Struct., 60(2), 279-289. https://doi.org/10.1016/0045-7949(95)60363-8
  25. Povoas, R.H.C.F. and Figueiras, J.A. (1989), "Non linear analysis of curved pre-stressed girder bridges", Proceedings of second international conference on computer aided analysis and design, Austria.
  26. Qing, S.B. and Liu, D.Y. (1989), Computational geometry- curve and surface modeling, Academic Press, London.
  27. Quiroga, A.S. and Arroya, M.A.U. (1991), "Optimization of prestressed concrete bridge decks", Comput. Struct., 41(3), 553-559. https://doi.org/10.1016/0045-7949(91)90149-G
  28. Raju, N.K. (1995), Pre-stressed concrete, Third Edition, Tata McGraw Hill, New Delhi, India.
  29. Roca, P. and Mari, A.R. (1993), "Numerical treatment of pre-stressing tendons in the non-linear analysis of prestressed concrete structures", Comput. Struct., 46(5), 905-916. https://doi.org/10.1016/0045-7949(93)90152-4
  30. Rogers, D.F. and Adams, J.A. (1990), Mathematical element for computer graphics, Second Edition, McGraw- Hill, New York.
  31. Saleem, A., Pathak, K.K. and Bhaduria, S.S. (2008), "Finite element analysis of pre-stress concrete beams considering realistic cable profile", Int. J. Appl. Eng. Res., 3(1).
  32. Schoenberg, I.J. (1946), "Contribution to the problem of approximation of equidistant data by analytic functions", Q. Appl. Math., 4, 45-99. https://doi.org/10.1090/qam/15914
  33. Utrilla, M.A. and Smartin, A. (1997), "Optimized design of the prestress in continuous bridge decks", Comput. Struct., 64(1-4), 719-728. https://doi.org/10.1016/S0045-7949(96)00434-8
  34. Vanzyl, S.F. and Scordelis, A.C. (1979), "Analysis of curved pre-stressed segmental bridges", J. Struct. Eng.- ASCE, 105(11), 2399 -2411.
  35. Wu, X.H. and Lu, X. (2003), "Tendon model for nonlinear analysis of externally prestressed concrete structures", J. Struct. Eng., 129(1), 96-104. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:1(96)
  36. Zienkiewicz, O.C. and Taylor, R.L. (1991), The finite element method, 1-2, Fourth Edition, McGraw-Hill London.

피인용 문헌

  1. Conceptual design of prestressed slab bridges through one-way flexural load balancing vol.48, pp.5, 2013, https://doi.org/10.12989/sem.2013.48.5.615