DOI QR코드

DOI QR Code

Morphology control and optical properties of ZnO nanostructures grown by ultrasonic synthesis

  • Morales-Flores, N. (Centro de Investigacion en Dispositivos Semiconductores, ICUAP, Benemerita Universidad Autonoma de Puebla) ;
  • Galeazzi, R. (Centro de Investigacion en Dispositivos Semiconductores, ICUAP, Benemerita Universidad Autonoma de Puebla) ;
  • Rosendo, E. (Centro de Investigacion en Dispositivos Semiconductores, ICUAP, Benemerita Universidad Autonoma de Puebla) ;
  • Diaz1d, T. (Centro de Investigacion en Dispositivos Semiconductores, ICUAP, Benemerita Universidad Autonoma de Puebla) ;
  • Velumani, S. (Department of Electrical Engineering (SEES), Centro de Investigacion y de Estudios Avanzados del IPN) ;
  • Pal, U. (Instituto de Fisica, Benemerita Universidad Autonoma de Puebla)
  • Received : 2013.01.15
  • Accepted : 2013.04.04
  • Published : 2013.03.25

Abstract

ZnO nanostructures of rod-like, faceted bar, cup-end bars, and spindle shaped morphologies could be grown by a low power ultrasonic synthesis process. pH of the reaction mixture seems to plays an important role for defining the final morphology of ZnO nanostructures. While the solution pH as low as 7 produces long, uniform rod-like nanostructures of mixed phase (ZnO and $Zn(OH)_2$), higher pH of the reaction mixture produces ZnO nanostructures of different morphologies in pure hexagonal wurtzite phase. pH of the reaction as high as 10 produces bar shaped uniform nanostructures with lower specific surface area and lower surface and lattice defects, reducing the defect emissions of ZnO in the visible region of their photoluminescence spectra.

Keywords

References

  1. Alivisatos, A.P. (1996), "Semiconductor clusters, nanocrystals, and quantum dots", Science, 271(5251), 933-937. https://doi.org/10.1126/science.271.5251.933
  2. Arguello, C.A., Rousseau, D.L. and Porto, S.P.S. (1969), "First-order raman effect in Wurtzite-type crystals", Phys. Rev., 181(3), 1351-1363. https://doi.org/10.1103/PhysRev.181.1351
  3. Bhattacharyya, S. and Gedanken, A. (2008), "A template-free, sonochemical route to porous ZnO nano-disks", Microporous and Mesoporous Materials, 110, 553-559. https://doi.org/10.1016/j.micromeso.2007.06.053
  4. Chiou, W.T., Wu, W.Y. and Ting, J.M. (2003), "Growth of single crystal ZnO nanowires using sputter deposition", Diam. Relat. Mater., 12, 1841-1844. https://doi.org/10.1016/S0925-9635(03)00274-7
  5. Cullity, B.D. (1956), "Elements of X-ray diffraction", Addison-Wesley Publishing Company, Inc., 56(10137), 98-99.
  6. Demianets, L.N., Kostomarov, D.V., Kuz'mina, I.P. and Pushko, S.V. (2002), "Mechanism of growth of ZnO single crystals from hydrothermal alkali solutions", Crystallogr. Rep., 47(1), S86-S98. https://doi.org/10.1134/1.1529962
  7. Dhas, N.A. and Suslick, K.S. (2005), "Sonochemical preparation of hollow nanospheres and hollow nanocrystals", J. Am. Chem. Soc., 127, 2368-2369. https://doi.org/10.1021/ja049494g
  8. Escobedo-Morales, A. and Pal, U. (2008), "Defect annihilation and morphological improvement of hydrothermally grown ZnO nanorods by Ga doping", Appl. Phys. Lett., 93(19), 193120-1-193120-3. https://doi.org/10.1063/1.3026746
  9. Escobedo Morales, A., Sanchez Mora, E. and Pal, U. (2007), "Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures", Revista mexicana de física, 53(5), 18-22.
  10. Fan, Z. and Lu, J.G. (2005), "Gate-refreshable nanowire chemical sensors", Appl. Phys. Lett., 86, 123510-1-123510-3. https://doi.org/10.1063/1.1883715
  11. Hsu, J.W.P., Tallant, D.R., Simpson, R.L., Missert, N.A. and Copeland, R.G. (2006), "Luminescent properties of solution-grown ZnO nanorods", Appl. Phys. Lett., 88, 252103-1-252103-3. https://doi.org/10.1063/1.2214137
  12. Huang, M.H., Mao, S., Feick, H., Yan, H. Wu, Y., Kind, H., Weber, E., Russo, R. and Yang P. (2001), "Room-temperature ultraviolet nanowire nanolasers", Science, 292, 1897-1899. https://doi.org/10.1126/science.1060367
  13. Jang, M.S., Ryu, M.K., Yoon, M.H., Lee, S.H., Kim, H.K., Onodera, A. and Kojima, S. (2009), "A study on the Raman spectra of Al-doped and Ga-doped ZnO ceramics", Curr. Appl. Phys., 9, 651-657. https://doi.org/10.1016/j.cap.2008.05.019
  14. Janotti, A. and Van de Walle, C.G. (2007), "Native point defects in ZnO", Phys. Rev. B., 76, 165202-1-165202-22. https://doi.org/10.1103/PhysRevB.76.165202
  15. Jing, Z. and Zhan, J. (2008), "Fabrication and gas-sensing properties of porous ZnO nanoplates", Adv. Mater., 20, 4547-4551. https://doi.org/10.1002/adma.200800243
  16. Kumar, R.V., Diamant, Y. and Gedanken, A. (2000), "Sonochemical Synthesis and Characterization of Nanometer-Size Transition Metal Oxides from Metal Acetates", Chem. Mater., 12(8), 2301-2305. https://doi.org/10.1021/cm000166z
  17. Kumar Yadav, H., Sreenivas, K., Katiyar, R.S. and Gupta, V. (2007), "Defect induced activation of Raman silent modes in rf co-sputtered Mn doped ZnO thin films", J. Phys. D: Appl. Phys., 40, 6005-6009. https://doi.org/10.1088/0022-3727/40/19/034
  18. Laudise, R.A. and Ballman, A.A. (1960), "Hydrothermal synthesis of zinc oxide and zinc sulfide", J. Phys. Chem., 64, 688-691. https://doi.org/10.1021/j100834a511
  19. Lee, S.Y., Shim, E.S., Kang, H.S., Pang, S.S. and Kang, J.S. (2005), "Fabrication of ZnO thin film diode using laser annealing", Thin Solid Films, 473, 31-34. https://doi.org/10.1016/j.tsf.2004.06.194
  20. Mishra, P., Yadav, R.S., and Pandey, A.C. (2009), "Starch assisted sonochemical synthesis of flower-like ZnO nanostructure", Digest Journal of Nanomaterials and Biostructures, 4(1), 193-198.
  21. Morales-Flores, N., Pal, U. and Sanchez Mora, E. (2011), "Photocatalytic behavior of ZnO and Pt-incorporated ZnO nanoparticles in phenol degradation", Applied Catalysis A: General, 394(1-2), 269-275. https://doi.org/10.1016/j.apcata.2011.01.011
  22. Pal, U., Aguila Almanza, E., Vazquez, O., Koshizaki, N., Sasaki, T. and Terauchi, S. (2001), "Synthesis and characterization of Au/ZnO nanocompostes", Modern Phys. Lett., B., 15, 679-682. https://doi.org/10.1142/S0217984901002282
  23. Pal, U. and Santiago, P. (2005), "Controlling the morphology of ZnO nanostructures in a low-temperature hydrothermal process", J. Phys. Chem. B., 109, 15317-15321. https://doi.org/10.1021/jp052496i
  24. Pal, U., Kim, C.W., Jadhav, N.A. and Kang, Y.S. (2009), "Ultrasound-assisted synthesis of mesoporous ZnO nanostructures of different porosities", J. Phys. Chem. C., 113(33), 14676-14680. https://doi.org/10.1021/jp904377n
  25. Phan, T.L., Vincent, R., Cherns, D., Dan, N.H. and Yu, S.C. (2008), "Enhancement of multiple-phonon resonant raman scattering in Co-doped ZnO nanorods", Appl. Phys. Lett., 93(8), 082110-082113. https://doi.org/10.1063/1.2968307
  26. Pu, X., Zhang, D., Jia, L. and Su, C. (2007), "Synthesis of zinc oxide nanostructures with controlled morphologies using a simple sonochemical method", J. Am. Ceram. Soc., 90(12), 4076-4078.
  27. Samaele, N., Amornpitoksuk, P. and Suwanboon, S. (2010), "Effect of pH on the morphology and optical properties of modified ZnO particles by SDS via a precipitation method", Powder Technology, 203, 243-247. https://doi.org/10.1016/j.powtec.2010.05.014
  28. Serrano, J., Romero, A.H., Manjon, F.J., Lauck, R., Cardona, M. and Rubio, A. (2004), "Pressure dependence of the lattice dynamics of ZnO: An ab initio approach", Phys. Rev. B., 69(9), 094306-094319. https://doi.org/10.1103/PhysRevB.69.094306
  29. Sharma, P.K., Pandey, A.C., Zolnierkiewicz, G., Guskos, N. and Rudowicz, C. (2009), "Relationship between oxygen defects and the photoluminescence property of ZnO nanoparticles: a spectroscopic view", J. Appl. Phys., 106(9), 094314-1-094314-5. https://doi.org/10.1063/1.3256000
  30. Studenikin, S.A., Golego, N. and Cocivera, M. (1998), "Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis", J. Appl. Phys., 84(4), 2287-2294. https://doi.org/10.1063/1.368295
  31. Suslick, K.S., Fang, M. and Hyeon, T. (1996), "Sonochemical synthesis of iron colloids", J. Am. Chem. Soc., 118(47), 11960-11961. https://doi.org/10.1021/ja961807n
  32. Vargas-Hernandez, C., Jimenez-Garcia, F.N. and Jurado, J.F. (2009), "Peliculas de ZnO impurificadas con Mn usando la Tecnica silar", Revista Latinoamericana de Metalurgia y Materiales, S1(2), 501-506.
  33. Venkatachalam, S., Kanno, Y. and Velumani, S. (2010), "Characterization on pulsed laser deposited nanocrystalline ZnO thin films", Vacuum, 84, 1199-1203. https://doi.org/10.1016/j.vacuum.2009.10.025
  34. Venkateswara, K.R. and Sunandana, C.S. (2008), "Structure and microstructure of combustion synthesized MgO nanoparticles and nanocrystalline MgO thin films synthesized by solution growth route", J. Mater Sci., 43, 146-154. https://doi.org/10.1007/s10853-007-2131-7
  35. Wahab, R., Kim, Y.S. and Shin, H.S. (2009), "Synthesis, characterization and effect of pH variation on zinc oxide nanostructures", Mater. Transactions, 50(8), 2092-2097. https://doi.org/10.2320/matertrans.M2009099
  36. Wang, X., Xu, J., Yu, X., Xue, K., Yu, J. and Zhao, X. (2007), "Structural evidence of secondary phase segregation from the Raman vibrational modes in Zn1-xCoxO (0 https://doi.org/10.1063/1.2759272
  37. Wei, X.Q., Man, B.Y., Liu, M., Xue, C.S., Zhuang, H.Z. and Yang, C. (2007), "Blue luminescent centers and microstructural evaluation by XPS and Raman in ZnO thin films annealed in vacuum, $N_2$ and $O_2$", Physica B., 388, 145-152. https://doi.org/10.1016/j.physb.2006.05.346
  38. Wu, X.L., Siu, G.G., Fu, C.L. and Ong, H.C. (2001), "Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films", Appl. Phys. Lett., 78(16), 2285-2287. https://doi.org/10.1063/1.1361288
  39. Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F. and Yan, H. (2003), "One-dimensional nanostructures: Synthesis, characterization, and applications", J. Adv. Mater., 15, 353-389. https://doi.org/10.1002/adma.200390087
  40. Xu, C.X., Sun, X.W., Dong, Z.L. and Yu, M.B. (2004), "Zinc oxide nanodisk", Appl. Phys. Lett., 85(17), 3878-3880. https://doi.org/10.1063/1.1811380
  41. Xu, S. and Wang, Z.L. (2011), "One-dimensional ZnO nanostructures: solution growth and functional properties", Nano Res., 4(11), 1013-1098. https://doi.org/10.1007/s12274-011-0160-7
  42. Yao, B.D., Chan, Y.F. and Wang, N. (2002), "Formation of ZnO nanostructures by a simple way of thermal evaporation", Appl. Phys. Lett., 81(4), 757-759. https://doi.org/10.1063/1.1495878
  43. Zhang, J., Sun, L., Yin, J., Su, H., Liao, C. and Yan, C. (2002), "Control of ZnO morphology via a simple solution route", Chem. Mater., 14(10), 4172-4177. https://doi.org/10.1021/cm020077h
  44. Zhang, X., Zhao, H., Tao, X., Zhao, Y. and Zhang, Z. (2005), "Sonochemical method for the preparation of ZnO nanorods and trigonal-shaped ultrafine particles", Mater. Lett., 59, 1745-1747. https://doi.org/10.1016/j.matlet.2005.01.046
  45. Zhou, H., Alves, H., Hofmann, D.M., Kriegseis, W., Meyer, B.K., Kaczmarczyk, G. and Hoffmann, A. (2002), "Behind the weak excitonic emission of ZnO quantum dots: $ZnO/Zn(OH)_2$ core-shell structure", Appl. Phys. Lett., 80(2), 210-212. https://doi.org/10.1063/1.1432763
  46. Zhu, Y.W., Zhang, H.Z., Sun, X.C., Feng, S.Q., Xu, J., Zhao, Q., Xiang, B., Wang, R.M. and Yu, D.P. (2003), "Efficient field emission from ZnO nanoneedle arrays", Appl. Phys. Lett., 83(1), 144-146. https://doi.org/10.1063/1.1589166

Cited by

  1. Influence of morphology on the performance of ZnO-based dye-sensitized solar cells vol.6, pp.44, 2016, https://doi.org/10.1039/C5RA25618F
  2. Solution grown ZnO rods: Synthesis, characterization and defect mediated photocatalytic activity vol.165, 2015, https://doi.org/10.1016/j.apcatb.2014.09.045
  3. Influence of Synthesis-Dependent Structural Morphology on Performance of Natural Dye-Sensitized ZnO Solar Cells pp.1543-1851, 2019, https://doi.org/10.1007/s11837-019-03372-4
  4. A Microwave-Assisted Synthesis of Zinc Oxide Nanocrystals Finely Tuned for Biological Applications vol.9, pp.2, 2019, https://doi.org/10.3390/nano9020212
  5. Paper-Based Nanoplatforms for Multifunctional Applications vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/6501923
  6. Wide spectral photoresponse of template assisted out of plane grown ZnO/NiO composite nanowire photodetector vol.31, pp.2, 2013, https://doi.org/10.1088/1361-6528/ab474e
  7. Low temperature biosynthesis of crystalline zinc oxide nanoparticles from Musa acuminata peel extract for visible-light degradation of methylene blue vol.206, pp.None, 2013, https://doi.org/10.1016/j.ijleo.2020.164279
  8. Growth of Zn thin films based on electric field by thermal evaporation method and effect of oxidation time on physical properties of ZnO nanorods vol.31, pp.11, 2013, https://doi.org/10.1007/s10854-020-03403-w
  9. Structural, optical and sensing properties of ZnS thick films deposited by RF magnetron sputtering technique at different powers vol.17, pp.3, 2013, https://doi.org/10.1108/wje-10-2019-0300