참고문헌
- Akhtar, M.S., Khan, M.A., Jeon, M.S. and Yang, O.B. (2008), "Controlled synthesis of various ZnO nanostructured materials", Electrochim. Acta, 53, 7869. https://doi.org/10.1016/j.electacta.2008.05.055
- American Chemical Society (ACS) (2006), "Ultrathin, Dye-sensitized Solar Cells Called Most Efficient To Date", Science Daily.
- Baruah, S. and Dutta, J. (2009), "Hydrothermal growth of ZnO nanostructures", Sci. Technol. Adv. Mater., 10, 013001. https://doi.org/10.1088/1468-6996/10/1/013001
- Baxter, J.B. and Aydil, E.S. (2005), "Nanowire-based dye-sensitized solar cells", Applied Physics Letters, 86, 053114. https://doi.org/10.1063/1.1861510
- Benkstein, K.D., Kopidakis, N., Lagemaat, J.V. and Frank, A.J. (2003), "Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells", J. of Physical Chem. B., 107(31), 7759-7767. https://doi.org/10.1021/jp022681l
- Brian, O.R. and Michael, G. (1991), "A low-cost, high-efficiency solar-cell based on dye sensitized colloidal TiO2 films", Nature, 353, 737-740. https://doi.org/10.1038/353737a0
- Chao, H.Y., Cheng, J.H., Lu, J.Y., Chang, Y.H., Cheng, C.L. and Chen, Y.F. (2010), "Growth and characterization of type-II ZnO/ZnTe core-shell nanowire arrays for solar cell applications", Superlattices and Microstructures, 47(1), 160-164. https://doi.org/10.1016/j.spmi.2009.07.005
- Charoensirithavorn, P. and Yoshikawa, S. (2006), "Dye-sensitized solar cell based on ZnO nanorod arrays", Sustainable Energy and Environment, B-024(O).
- Chen, H.H., Du Pasquier, A., Saraf, G., Zhong, J. and Lu, Y. (2008), "Dye-sensitized solar cells using ZnO nanotips and Ga-Doped ZnO", Semicond. Sci. Technol., 23, 045004. https://doi.org/10.1088/0268-1242/23/4/045004
- Du Pasquier, A., Chen, H.H. and Lu, Y.C. (2006), "Dye-sensitized solar cells using well- aligned Zinc Oxide nanotip arrays", Appl. Phy. Lett., 89, 253513. https://doi.org/10.1063/1.2420779
- Dye-Sensitized Solar Cells, http://lpi.epfl.ch/solarcellE.html, 2 February, 1999. Retrieved 13 January, 2012.
- Fang, Y., Pang, Q., Wen, X., Wang, J. and Yang, S. (2006), "Synthesis of ultrathin ZnO nanofibers aligned on a Zinc substrate", Small., 2(5), 612-615. https://doi.org/10.1002/smll.200500379
- Gao, F., Wang, Y., Zhang, J., Shi, D., Wang, M., Humphry-Baker, R., Wang, P., Zakeeruddin, S.M. and Gratzel, M. (2008), "A new heteroleptic ruthenium sensitizer enhances the absorptivity of mesoporous titania film for a high efficiency dye-sensitized solar cell", Chemical Communications, 23, 2635.
- Gao, X. D., Li, X.M., Yu, W.D., Qiu, J.J. and Gan, X.Y. (2007), "Preparation of nanoporous TiO2 thick film and its photoelectrochemical properties sensitized by Merbromin", J. Inorg. Mat., 22(6), 1079-1085.
- Gao, X., Wang, C., Gan, X. and Li, X. (2011), "Ordered semiconductor photoanode films for dye-sensitized solar cells based on Zinc Oxide-Titanium Oxide hybrid nanostructures", Institute of Ceramics, P.R. China.
- Gerischer, H., Michel-BeyerleM., Rebentrost, E. and Tributsch, H. (1968), "Sensitization of charge-injection into semiconductors with large band gap", Electrochim. Acta, 13, 1509-1515. https://doi.org/10.1016/0013-4686(68)80076-3
- Gratzel, M. (2008), "A new heteroleptic ruthenium sensitizer enhances the absorptivity of mesoporous titania film for a high efficiency dye-sensitized solar cell", Chemical Communications, 23, 2635-7.
-
Jennings, J.R., Ghicov, A., Peter, L.M., Schmuki, P. and Walker, A.B. (2008), "Dye-sensitized solar cells based on oriented
$TiO_2$ nanotube array: transport, trapping and transfer electrons", J. Am. Chem. Soc., 130, 13364. https://doi.org/10.1021/ja804852z - Kang, S.H., Choi, S.H., Kang, M.S., Kim, J.Y., Kim, H.S., Hyeon, T. and Sung, Y.E. (2008), "Nanorod-based dye-sensitized solar cells with improved charge collection efficiency", Adv. Mater, 20(1), 54-58. https://doi.org/10.1002/adma.200701819
- Lai, M.H., Lee, M.W., Wang, G. and Tai, M.F. (2011), "Photovoltaic performance of new- structure ZnO-nanorod dye-sensitized solar cells", Int. J. Electrochem. Sci., 6, 2122-2130.
- Law, M., Greene, L.E., Johnson, J.C., Saykally, R. and Yang, P. (2005), "Nanowire dyesensitized solar cells", Nature Materials., 4(6), 455-459. https://doi.org/10.1038/nmat1387
- Li, Q.C., Kumar, V., Li, Y., Zhang, H.T., Marks, T.J. and Chang, R.P.H. (2005), "Fabrication of ZnO nanorods and nanotubes in aqueous solutions", Chem. Mater., 17, 1001. https://doi.org/10.1021/cm048144q
- Lin, J., Penchev, M., Wang, G., Paul, R.K., Zhong, J., Jing, X., Ozkan, M. and Ozkan, C.S. (2010), "Heterogeneous graphene nanostructures: ZnO nanostructures grown on large-area graphene layers", Small., 6(21), 2448-2452. https://doi.org/10.1002/smll.201000250
- Lu, C., Qi, L., Yang, J., Tang, L., Zhang, D. and Ma, J. (2006), "Hydrothermal growth of largescale micropatterned arrays of ultralong ZnO nanowires and nanobelts on zinc substrate", Chemical Communications, 42(33), 3551-3553.
- Matsumura, M., Matsudaira, S., Tsubomura, H., Takata, M. and Yanagida, H. (1980), "Dye sensitization and surface structures of semiconductor electrodes", Ind. Eng. Chem. Prod. Res. Dev., 19(3), 415-421. https://doi.org/10.1021/i360075a025
- Michael, B. (2006), "Nanowires could lead to improved solar cells", Newswire Today.
- Michael, G. (2000), "Perspectives for dye-sensitized nanocrystalline solar cells", Progress in Photovoltaics: Research and Applications, 8(1), 27-38. https://doi.org/10.1002/(SICI)1099-159X(200001/02)8:1<27::AID-PIP296>3.0.CO;2-8
- Nakamura, Y. (2006), "Solution-growth of Zinc Oxide nanowires for dye-sensitized solar cells", NNIN REU 2006 Research Accomplishments, 74.
- Nattestad, A., Mozer, A.J., Fischer, M.K., Cheng, Y.B., Mishra, A., Bauerle, P. and Bach, U. (2010), "Highly efficient photocathodes for dye-sensitized tandem solar cells", Nature Materials, 9(1), 31-5. https://doi.org/10.1038/nmat2588
- Nazeeruddin, M.K., Pechy, P., Renouard, T., Zakeeruddin, S.M., Humphry-Baker, R., Comte, P., Liska, P., Cevey, L., Costa, E., Shklover, V., Spiccia, L., Deacon, G.B., Bignozzi, C.A. and Gratzel, J. (2001), "Engineering of efficiency panchromatic sensitizers for nanocrystalline TiO2-based solar cells", Am. Chem. Soc., 123, 1613. https://doi.org/10.1021/ja003299u
-
O'Regan, B. and Gratzel, M. (1991), "A low-cost high-efficiency solar cell based on dye-sensitized colloidal
$TiO_2$ films", Nature, 353(6346), 737-740. https://doi.org/10.1038/353737a0 - Peng, Q. and Qin, Y. (2011), "ZnO nanowires and their application for solar cells", Nanchang, 330063 China.
- Suliman, A.E., Tang, Y.W. and Xu, L. (2007), "Preparation of ZnO nanoparticles and nanosheets and their application to dye-sensitized solar cells", Sol. Energ. Mat. Sc., 91, 1658. https://doi.org/10.1016/j.solmat.2007.05.014
- Tributsch, H. and Calvin, M. (1971), "Electrochemistry of excited molecules: photoelectrochemical reactions of chlorophylls", Photochem. Photobiol. 14, 95-112. https://doi.org/10.1111/j.1751-1097.1971.tb06156.x
- Tributsch, H. (1972), "Reaction of excited chorophyll molecules at electrodes and in photosynthesis", Photochem. Photobiol., 16, 261-269.
- Tubtimtae, A. and Lee, M. (2012), "ZnO nanorods on undoped and indium-doped ZnO thin films as a TCO layer on nonconductive glass for dye-sensitized solar cells", Superlattices and Microstructures, 52(5). 987-996. https://doi.org/10.1016/j.spmi.2012.08.002
-
Yang, W., Wan, F., Chen, S. and Jiang, C. (2009), "Hydrothermal growth and application of ZnO nanowire films with ZnO and
$TiO_2$ buffer layers in dye-sensitized solar cells", Nanoscale Res Lett., 4, 1486-1492. https://doi.org/10.1007/s11671-009-9425-4 - Zhang, Q., Dandeneau, C.S., Zhou, X. and Cao, G. (2009), "ZnO nanostructures for dye-sensitized solar cells", Adv. Mater., 21, 4087-4108. https://doi.org/10.1002/adma.200803827
피인용 문헌
- Morphology dependent thermal conductivity of ZnO nanostructures prepared via a green approach vol.695, 2017, https://doi.org/10.1016/j.jallcom.2016.10.196
- A theoretical and experimental investigation of Eu-doped ZnO nanorods and its application on dye sensitized solar cells vol.739, 2018, https://doi.org/10.1016/j.jallcom.2017.12.262
- SrZnO nanostructures grown on templated <0001> Al2O3 substrates by pulsed laser deposition vol.7, pp.9, 2017, https://doi.org/10.1063/1.4996812
- Optical study and ruthenizer (II) N3 dye-sensitized solar cell application of ZnO nanorod-arrays synthesized by combine two-step process vol.119, pp.4, 2015, https://doi.org/10.1134/S0030400X15100197
- Morphology dependent change in photovoltage generation using dye-Cu doped ZnO nanoparticle mixed system vol.89, 2015, https://doi.org/10.1016/j.energy.2015.05.127
- Effect of electrolytic media on the photophysical properties and photocatalytic activity of zinc oxide nanoparticles synthesized by simple electrochemical method vol.232, 2017, https://doi.org/10.1016/j.molliq.2017.02.074
- A quasi solid state dye sensitized solar cell based on gelatin/multiwalled carbon nanotube gel electrolyte and ZnO nanorod photoanode vol.27, pp.8, 2016, https://doi.org/10.1007/s10854-016-4777-x
- Dye-sensitized solar cells based on Al-doped ZnO photoelectrodes sensitized with rhodamine vol.220, pp.None, 2013, https://doi.org/10.1016/j.matlet.2018.03.040
- Synthesis, characterization, and application of transition metals (Ni, Zr, and Fe) doped TiO2 photoelectrodes for dye-sensitized solar cells vol.299, pp.None, 2013, https://doi.org/10.1016/j.molliq.2019.112177
- Cytotoxicity and cell death induced by engineered nanostructures (quantum dots and nanoparticles) in human cell lines vol.25, pp.2, 2013, https://doi.org/10.1007/s00775-020-01764-5
- Well-aligned ZnO nanorod array covered with ruthenium layers for alternative counter electrodes in dye-sensitized solar cells vol.550, pp.None, 2013, https://doi.org/10.1016/j.apsusc.2021.149273