DOI QR코드

DOI QR Code

Carbon nanotube antennas analysis and applications: review

  • El-sherbiny, Sh.G. (Department of Electronics and Electrical Communication, Faculty of Electronics Engineering, Menoufia University) ;
  • Wageh, S. (Physics & Engineering Mathematics Department, Faculty of Electronic Engineering, Menoufia University) ;
  • Elhalafawy, S.M. (Department of Electronics and Electrical Communication, Faculty of Electronics Engineering, Menoufia University) ;
  • Sharshar, A.A. (Department of Electronics and Electrical Communication, Faculty of Electronics Engineering, Menoufia University)
  • Received : 2012.10.23
  • Accepted : 2013.02.18
  • Published : 2013.03.25

Abstract

Carbon nanotube characterized by additional inductive effect as compared with the traditional conductors like copper wires of the same size. Consequently, carbon nanotubes have high characteristic impedance and slow wave propagation in comparison with traditional conductors. Due to these characteristics, carbon nanotubes can be used as antenna. In view of this, we describe and review the present research progress on carbon nanotube antennas. We present different analysis models and results which are developed to investigate the characteristics of CNT antennas. Then we conclude by summarizing the characteristics of CNT antennas and specifying the operating frequency limit.

Keywords

References

  1. Attiya, A.M. (2009), "Lower frequency limit of carbon nanotube antenna", Progress In Electromagnetics Research, PIER, 94, 419-433 https://doi.org/10.2528/PIER09062001
  2. Balanis, C.A. (2005), Antenna Theory: Analysis and Design, Wiley, New York.
  3. Bayram, Y., Zhou, Y., Shim, B.S., Xu, S., Zhu, J., Kotov, N.A. and Volakis, J.L. (2010), "E-textile conductors and polymer composites for conformal lightweight antennas", IEEE Transactions on Antennas and Propagation, 58, 2732-2736 https://doi.org/10.1109/TAP.2010.2050439
  4. Burke, P.J. (2004a), "Luttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes", IEEE Transactions on Nanotechnology, 1(3), 129-144 (2002) and Erratum 3 (2)331-331.
  5. Burke, P.J. (2004b), "An Rf circuit model for carbon nanotubes", IEEE Transactions on Nanotechnology, 2(1), 55-58(2003) and Erratum, 3 (2)331-331.
  6. Burke, P.J., Li, S. and Yu, Z. (2006), "Quantitative theory of nano wire and nanotube antenna performance", IEEE Trans. Nanotechnol., 5(4), 76-81.
  7. Cheung, C.L., Hafner, J.F. and Leiber, C.M. (2000), "Carbon nanotube atomic force microscopy tips: direct growth by chemical vapor deposition and application to high-resolution imaging", Proc. Natl. Acad. Sci., 97, 3809-3813. https://doi.org/10.1073/pnas.050498597
  8. De Heer, W.A., Chatelain, A. and Ugarte, D. (1995), "A carbon nanotube field-emission electron source," Science, 270, 1179-1180. https://doi.org/10.1126/science.270.5239.1179
  9. Dragoman, M., Dragoman, D., Al Ahmad, M., Plana, R. and Flahaut, E. (2009), "RF devices written with carbon nanotube ink on paper", European Microwave Conference, 575-577.
  10. Dresselhaus, M., Dresselhaus, G. and Avouris, P. (2001), Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, Springer Verlag, Berlin, Germany.
  11. Durkop, T., Getty, S.A., Cobas, E. and Fuhrer, M.S. (2004), "Extraordinary mobility in semiconducting carbon nanotubes", Nano Letters, 4(1), 35-39. https://doi.org/10.1021/nl034841q
  12. Guo, J., Lundstrom, M. and Datta, S. (2002), "Performance projections for ballistic carbon nanotube fieldeffect transistors", Applied Physics Letters, 80, 3192-3194. https://doi.org/10.1063/1.1474604
  13. Hanson, G.W. (2005), "Fundamental transmitting properties of carbon nanotube antennas", IEEE Trans. Antennas Propagate, 53(11), 426-3435.
  14. Hanson, G.W. (2006), "Current on an infinitely-long carbon nanotube antenna excited by a gap generator," IEEE Trans. Antennas Propagate, 54, 76-81. https://doi.org/10.1109/TAP.2005.861550
  15. Hao, J. and Hanson, G.W. (2006), "Infrared and optical properties of carbon nanotube dipole antennas", IEEE Transaction on Nanotechnology, 5(6), 766-775. https://doi.org/10.1109/TNANO.2006.883475
  16. Huang, S.M., Cai, X.Y., Du, C.S. and Liu, J. (2003), "Oriented long single walled carbon nanotubes on substrates from floating catalysts", Journal of Physical Chemistry B, 107(48), 13251-13254. https://doi.org/10.1021/jp0364708
  17. Huang, S.M., Cai, X.Y. and Liu, J. (2003), "Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates", Journal of the American Chemical Society, 125(19), 5636-5637. https://doi.org/10.1021/ja034475c
  18. Huang, S.M., Maynor, B., Cai, X.Y. and Liu, J. (2003), "Ultralong, well-aligned single walled carbon nanotube architectures on surfaces", Advanced Materials, 15(19), 1651-1655. https://doi.org/10.1002/adma.200305203
  19. Huang, S.M., Woodson, M., Smalley, R. and Liu, J. (2004), "Growth mechanism of oriented long single walled carbon nanotubes using 'fast-heating' chemical vapor deposition process", Nano Letters, 4(6), 1025-1028. https://doi.org/10.1021/nl049691d
  20. Huang, Y., Yin, W.Y. and Lui, Q.H. (2008), "Performance Prediction of carbon nanotube bundle dipole antennas", IEEE Trans. Nanotechnology, 7, 331- 337. https://doi.org/10.1109/TNANO.2007.915017
  21. Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354, 56-58. https://doi.org/10.1038/354056a0
  22. Javey, A., Guo, J., Wang, Q., Lundstrom, M. and Dai, H.J. (2003), "Ballistic carbon nanotube field-effect transistors", Nature, 424, 654-657. https://doi.org/10.1038/nature01797
  23. Jones, D.S. (1994), Methods in Electromagnetic Wave Propagation, IEEE Press, Wiley, New York.
  24. Kim, W., Choi, H.C., Shim, M., Li, Y.M., Wang, D.W. and Dai H.J. (2002), "Synthesis of ultra long and high percentage of semi conducting single-walled carbon nanotubes", Nano Letters, 2(7), 703-708. https://doi.org/10.1021/nl025602q
  25. Kittel, C. (1986), Introduction to Solid State Physics, 6th Edition, Wiley, New York.
  26. Lin, M.F. and Shung, K.W.K. (1994), "Plasmons and optical properties of carbon nanotubes", Phys. Rev. B, 50, 17744-17747. https://doi.org/10.1103/PhysRevB.50.17744
  27. Maffuci, A., Miano, G., Rubinacci, G., Tamburrino, A. and Villone, F. (2008), "Plasmonic, carbon nanotube and conventional nano-interconnects: a comparison of propagation properties", 12th IEEE workshop on signal propagation on interconnects, SPI.
  28. Maksimenko, S.A., Slepyan, G.Y., Lakhtakia, A., Yevtushenko, O. and Gusakov, A.V. (1999), "Electrodynamics of carbon nanotubes: dynamic conductivity, impedance boundary conditions, and surface wave propagation", Phys. Rev. B, 60, 17136-17149. https://doi.org/10.1103/PhysRevB.60.17136
  29. Mehdipour, A., Sebak, A.R., Trueman, C.W., Rosca, I.D. and Hoa, S.V. (2010), "Reinforced continuous carbon-fiber composites using multi-wall carbon nanotubes for wideband antenna applications", IEEE Transactions on Antennas and Propagation, 58, 2451-2456. https://doi.org/10.1109/TAP.2010.2048862
  30. Mehdipour, A., Rosca, I., Sebak, A., Trueman, C. and Hoa, S., (2011), "Carbon nanotube composites for wideband millimeter- wave antenna applications", IEEE Transactions on Antennas and Propagation, 59, 3572 -3578. https://doi.org/10.1109/TAP.2011.2163755
  31. Mehdipour, A., Sebak, A., Trueman, C.W., Rosca, I.D. and Hoa, S.V. (2012), "Conductive carbon fiber composite materials for antenna and microwave applications", NRSC.
  32. Merkoci, A. (2006), "Carbon nanotubes in analytical sciences", Microchim. Acta, 152, 157-174 https://doi.org/10.1007/s00604-005-0439-z
  33. Poole, C.P and Owens, F.J. (2003), Introduction to Nanotechnology, Wiley Interscience.
  34. Postma, H.W.C., Teepen, T., Yao, Z., Grifoni, M. and Dekker, C. (2001), "Carbon nanotube single-electron transistors at room temperature", Science, 293, 76-79. https://doi.org/10.1126/science.1061797
  35. Roglski, M.S. and Palmer, S.B. (2000), Solid State Physics, Gordon and Breach, Australia.
  36. Saito, R., Dresselhaus, G. and Dresselhaus, M.S. (2003), Physical Properties of Carbon Nanotubes, Imperial College Press, London, U.K.
  37. Tasaki, S., Maekawa, K. and Yamabe, T. (1998), "${\pi}$-band contribution to the optical properties of carbon nanotubes: effects of chirality", Phys. Rev. B, 57, 9301-9318. https://doi.org/10.1103/PhysRevB.57.9301
  38. Wang, Y., Kempa, K., Kimball, B., Carlson, J.B., Benham, G., Li, W.Z., Kempa, T. and Rybczynski, J. (2004), "Receiving and transmitting light-like radio waves: antenna effect in arrays of aligned carbon nanotubes", App. Phys. Lett., 85(13), 2607-2609 https://doi.org/10.1063/1.1797559
  39. Yang, L., Zhang, R., Staiculescu, D., Wong, C.P. and Tentzeris, M.M. (2009), "A novel conformal RFID-enabled module utilizing inkjet-printed antennas and carbon nanotubes for gas-detection applications", IEEE Antennas and Wireless Propagation Letters, 8, 653-656. https://doi.org/10.1109/LAWP.2009.2024104
  40. Yu, Z., Li, S. and Burke, P.J. (2004a), "Synthesis of aligned arrays of millimeter long, straight single walled carbon nanotubes", Chemistry Mater., 16(18) 3414-3416. https://doi.org/10.1021/cm049503k
  41. Zheng, L.X., O'Connell, M.J., Doorn, S.K., Liao, X.Z., Zhao, Y.H., Akhadov, E.A., Hoffbauer, M.A., Roop, B.J., Jia, Q.X., Dye, R.C., Peterson, D.E., Huang, S.M., Liu, J. and Zhu, Y.T. (2004), "Ultralong single-wall carbon nanotubes", Nat. Mater., 3, 673. https://doi.org/10.1038/nmat1216
  42. Zhou, Y., Bayram, Y., Du, F., Dai, L. and Volakis, J.L. (2010), "Polymer-carbon nanotube sheets for conformal load bearing antennas", IEEE Transactions on Antennas and Propagation, 58, 2169-2175. https://doi.org/10.1109/TAP.2010.2048852
  43. Zhou, Y., Gaur, A., Hur, S.H., Kocabas, C., Meitl, M.A., Shim, M. and Rogers, J.A. (2004), "p-Channel, n-channel thin film transistors and p-n diodes based on single wall carbon nanotube networks", Nano Letters, 4, 2031. https://doi.org/10.1021/nl048905o

Cited by

  1. Effect of high energy ball milling on the structure of iron - multiwall carbon nanotubes (MWCNT) composite vol.6, pp.3, 2017, https://doi.org/10.12989/amr.2017.6.3.245
  2. Investigation of Nanomaterial Dipoles for SAR Reduction in Human Head vol.73, pp.5, 2019, https://doi.org/10.1515/freq-2018-0220
  3. Investigation of Nanomaterial Dipoles for SAR Reduction in Human Head vol.73, pp.5, 2019, https://doi.org/10.1515/freq-2018-0220
  4. Simulating vibration of single-walled carbon nanotube using Rayleigh-Ritz's method vol.8, pp.3, 2013, https://doi.org/10.12989/anr.2020.8.3.215
  5. Advancements in the use of carbon nanotubes for antenna realization vol.136, pp.None, 2013, https://doi.org/10.1016/j.aeue.2021.153753