References
-
Almquist, C.B. and Biswas, P. (2002), "Role of synthesis method and particle size of nanostructured
$TiO_2$ on its photoactivity", J. Catal., 212, 145-156. https://doi.org/10.1006/jcat.2002.3783 - Anpo, M., Shima, T., Kodama, S. and Kubokawa, Y. (1987), "Photocatalytic hydrogenation of propyne with water on small-particle titania: size quantization effects and reaction intermediates", J. Phys. Chem., 91, 4305-4310. https://doi.org/10.1021/j100300a021
-
Ardizzone, S., Bianchi, C.L., Cappelletti, G., Gialanella, S., Pirola, C. and Ragaini, V. (2007), "Tailored anatase/brookite nanocristalline
$TiO_2$ . The optimal particle features for liquid-and-gas-phase photocatalytic reactions", J. Phys. Chem. C, 111(35), 13222-13231. https://doi.org/10.1021/jp0741096 -
Bianchi, C.L., Gatto, S., Pirola, C., Scavini, M., Vitali, S. and Capucci, V. (2013), "Micro-
$TiO_2$ as starting material for stable photocatalytic tiles", CCC, doi:0.1016/j.cemconcomp.2012.08.019. https://doi.org/10.1016/j.cemconcomp.2012.08.019 -
Cappelletti, G., Ardizzone, S., Bianchi, C.L., Gialanella, S., Naldoni, A., Pirola, C. and Ragaini, V. (2009), "Photodegradation of pollutants in air: Enhanced properties of nano-
$TiO_2$ prepared by ultrasound", Nanoscale Res. Lett., 4(2), 97-105. https://doi.org/10.1007/s11671-008-9208-3 - CIE (1932), Commission internationale de l'Eclairage proceedings, 1931, Cambridge University Press, Cambridge.
- Colorimetry, 3rd Ed. (2004), CIE 15.3.
- Guild, J. (1931), The colorimetric properties of the spectrum, Philosophical Transactions of the Royal Society of London, A230, 149-187.
- Hermann, J.M. (1999), "Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants", Catal Today, 53(1), 115-129. https://doi.org/10.1016/S0920-5861(99)00107-8
- Fujishima, A. and Honda, K. (1972), "Electrochemical photolysis of water at a semiconductor electrode", Nature, 238(5358), 37-38. https://doi.org/10.1038/238037a0
- Fujishima, A., Rao, T.N. and Tryk, D.A. (2000), "Titanium dioxide photocatalysis", J. Photoch. Photobio. C, 1(1), 1-21. https://doi.org/10.1016/S1389-5567(00)00002-2
- Fujishima, A. and Zhang, X. (2006), "Titanium dioxide photocatalysis: present situation and future approaches", C.R. Chim., 9(5-6), 750-760. https://doi.org/10.1016/j.crci.2005.02.055
-
Kwon, S., Fan, M., Cooper, A.T. and Yang, H. (2008), "Photocatalytic applications of micro- and nano-
$TiO_2$ in environmental engineering", Crit. Rev. Env. Sci. Tec., 38(3), 197-226. https://doi.org/10.1080/10643380701628933 -
Lin, H., Huang, C.P., Li, W., Ni, C., Ismat Shah, S. and Tseng, Y.H. (2006), "Size dependency of nanocrystalline
$TiO_2$ on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol", Appl. Catal. B, 68, 1-11. https://doi.org/10.1016/j.apcatb.2006.07.018 -
Maira, A.J., Yeung, K.L., Lee, C.Y., Yeu, P.L. and Chan, C.K. (2000), "Size effects in gas-phase photooxidation of trichloroethylene using nanometer-sized
$TiO_2$ catalysts", J. Catal., 192(1), 185-196. https://doi.org/10.1006/jcat.2000.2838 -
Mehrabi, S., Barrett, C., Thomas, C., Watson, J., Gray, B. and Mintz, E.A. (2008), "Effect of pH, inorganic ions and wave length on photocatalytic antiviral and antibacterial activities of
$TiO_2$ toward elucidation of the chemistry of the action", Preprints of Extended Abstracts presented at the ACS National Meeting, American Chemical Society, Division of Environmental Chemistry 48(1), 864-868. -
Meroni, M., Ardizzone, S., Cappeleltti, G., Ceotto, M., Ratti, M., Annunziata, R., Benaglia, M. and Raimondi, L. (2011), "Interplay between chemictry and texture in hydrophobic
$TiO_2$ hybrids", J. Phys. Chem. C, 115(38), 18649-18658. https://doi.org/10.1021/jp205142b -
Milanesi, F., Cappelletti, G., Annunziata, R., Bianchi, C.L., Meroni, D. and Ardizzone, S. (2010), "Siloxane-
$TiO_2$ hybrid nanocomposites. The structure of the hydrophobic layer", J. Phys. Chem. C, 114(18), 8287- 8293. https://doi.org/10.1021/jp1014669 -
Ochiai, T. and Fujishima, A. (2012), "Photoelectrochemical properties of
$TiO_2$ photocatalyst and its applications for environmental purification", J. Photo. Photobio. C, 13(4), 247-262. https://doi.org/10.1016/j.jphotochemrev.2012.07.001 - Smith, T. and Guild, J. (1931), "The C.I.E. colorimetric standards and their use", Transact. Opt. Soc., 33(3), 73-134. https://doi.org/10.1088/1475-4878/33/3/301
- Trouiller, B., Reliene, R., Westbrook, A., Solaimani, P. and Schiestl, R.H. (2009), "Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice", Cancer Res., 69(22), 8784-8789. https://doi.org/10.1158/0008-5472.CAN-09-2496
- Wang, R., Hashimoto, K., Fujishima, A., Chikui, M., Kojima, E., Kitamura, A., Shimohigoshi, M. and Watanabe, T. (1997), "Light-induced amphiphilic surface", Nature, 388, 431-432. https://doi.org/10.1038/41233
- Wright, W.D. (1928), "A re-determination of the trichromatic coefficients of the spectral colours", Transact. Opt. Soc., 30(4), 141-164.
-
Zhang, Z., Wang, C.C., Zakaria, R. and Ying, J.Y. (1998), "Role of particle size in nanocrystalline
$TiO_2$ - based photocatalysts", J. Phys. Chem. B, 102(52), 10871-10878. https://doi.org/10.1021/jp982948+
Cited by
- Microsized-titanium dioxide based self-cleaning cement: incorporation of calcined dolomite for enhancement of photocatalytic activity vol.5, pp.11, 2018, https://doi.org/10.1088/2053-1591/aadd87
- Influence of the Addition of TiO2 Nanoparticles on the Self-Cleaning Performance of Cementitious Composite Surfaces vol.63, pp.1, 2013, https://doi.org/10.3390/proceedings2020063042
- Influence of TiO2 Nanoparticles Addition on the Hydrophilicity of Cementitious Composites Surfaces vol.10, pp.13, 2020, https://doi.org/10.3390/app10134501
- Influence of TiO2 Nanoparticles on the Resistance of Cementitious Composite Materials to the Action of Fungal Species vol.14, pp.16, 2021, https://doi.org/10.3390/ma14164442
- TiO2-SiO2 nanocomposites from technological wastes for self-cleaning cement composition vol.44, pp.None, 2021, https://doi.org/10.1016/j.jobe.2021.102648