DOI QR코드

DOI QR Code

Nannochloris eucaryotum growth: Kinetic analysis and use of 100% CO2

  • Concas, Alessandro (Centro di Ricerca Sviluppo e Studi Superiori in Sardegna (CRS4)) ;
  • Lutzu, Giovanni Antonio (Centro Interdipartimentale di Ingegneria e Scienze Ambientali (CINSA), Universita di Cagliari e Laboratorio di Cagliari del Consorzio "La Chimica per l'Ambiente") ;
  • Locci, Antonio Mario (Dipartimento di Ingegneria Meccanica, Chimica e Materiali, Universita di Cagliari) ;
  • Cao, Giacomo (Centro di Ricerca Sviluppo e Studi Superiori in Sardegna (CRS4))
  • Received : 2012.12.04
  • Accepted : 2013.01.21
  • Published : 2013.03.25

Abstract

Microalgae are receiving an increasing attention because of their potential use as $CO_2$ capture method and/or as feedstock for biofuels production. On the other hand the current microalgae-based technology is still not widespread since it is characterized by technical and economic constraints that hinder its full scale-up. In such contest the growth kinetics of Nannochloris eucaryotum (a relatively unknown marine strain) in batch and semi-batch photobioreactors is quantitatively investigated with the aim of obtaining the corresponding kinetic parameters suitable for process engineering and its optimization. In particular the maximum growth rate was evaluated to be 1.99 $10^{-3}\;h^{-1}$. Half saturation concentrations for nitrates ($K_N$) and phosphates uptake ($K_P$) were evaluated as 5.4 $10^{-4}\;g_N\;L^{-1}$ and 2.5 $10^{-5}\;g_P\;L^{-1}$, respectively. Yield factors for nitrogen ($Y_N$) and phosphorus ($Y_P$) resulted to be 5.9 $10^{-2}\;g_N\;g^{-1}$ biomass and 6.0 $10^{-3}\;g_P\;g^{-1}{_{biomass}}$, respectively. The possibility of using 100% (v/v) $CO_2$ gas as carbon source is also evaluated for the first time in the literature as far as N. eucaryotum is concerned. The strain showed a good adaptability to high concentrations of dissolved $CO_2$ as well as to low pH. The lipid content under 100% $CO_2$ is about 16.16 %wt $wt^{-1}$ and the fatty acid methyl esters composition of the extracted oil is in compliance with the European regulation for quality biodiesel.

Keywords

References

  1. Amaro, H.M., Guedes, A. and Malcata, F.X. (2011), "Advances and perspectives in using microalgae to produce biodiesel", Appl. Energy, 88, 3402-3410. https://doi.org/10.1016/j.apenergy.2010.12.014
  2. Bailey, J.E. and Ollis, D.F. (1986), "Biochemical engineering fundamentals", 2nd Edition, Mc-Graw-Hill, Inc. New York.
  3. Borowitza, M.A. (1999), "Commercial production of microalgae: Ponds, tanks, tubes and fermenters", J. Biotechnol., 70, 313-321. https://doi.org/10.1016/S0168-1656(99)00083-8
  4. Cao, G. and Concas, A. (2008), " Procedimento per la produzione di biopetrolio che prevede l'impiego di $CO_2$", Patent MI2008A001802.
  5. Cao, G. and Concas, A. (2010), "Process for bio-oil production which makes use of carbon dioxide", Patent EP10158619.6.
  6. Chen, C.T., Yeh, K.L., Aisyah, R., Lee, D.J. and Chang, J.S. (2011), "Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review", Bioresour. Technol., 102, 71-81. https://doi.org/10.1016/j.biortech.2010.06.159
  7. Cheng, J.J. and Timilsina, G.R. (2011), "Status and barriers of advanced biofuel technologies: A review, Renew", Energy, 36 3541-3549. https://doi.org/10.1016/j.energy.2011.03.060
  8. Chisti, Y. (2007), "Biodiesel from microalgae", Biotechnol. Adv., 25, 294-306. https://doi.org/10.1016/j.biotechadv.2007.02.001
  9. Commission Regulation (EEC) $N^{\circ}$ 2568/91 (1991); Annex XA. http://eur-lex.europa.eu/LexUriServ/site/en/consleg/1991/R/01991R2568-20031101-en.pdf.
  10. Concas, A., Lutzu, G.A, Pisu, M. and Cao, G. (2012), "Experimental analysis and novel modeling of semi-batch photobioreactors operated with Chlorella vulgaris and fed with 100 %(v/v) $CO_2$", Chem. Eng. J., 213, 203-213. https://doi.org/10.1016/j.cej.2012.09.119
  11. Concas, A., Pisu, M. and Cao, G. (2010), "Novel simulation model of BIOCOIL photobioreactors for $CO_2$ sequestration with microalgae", Chem. Eng. J., 157, 297-303. https://doi.org/10.1016/j.cej.2009.10.059
  12. Damiani, M.C., Popovich, C.A., Constenla, D. and Leonardi, P.I. (2010), "Lipid analysis in Haematococcus pluvialis to assess its potential use as a biodiesel feedstock", Bioresour. Technol., 101, 3801-3807. https://doi.org/10.1016/j.biortech.2009.12.136
  13. Dorval Courchesne, N.M., Parisien, A., Wang, B. and Lan, C.Q. (2009), "Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches", J. Biotechnol., 141, 31-41. https://doi.org/10.1016/j.jbiotec.2009.02.018
  14. Fajardo, A.M., Cerdan, L.E., Medina, A.R., Acien Fernandez, F.G., Gonzàlez Moreno, P.A. and Molina Grima, E. (2007), "Lipid extraction from the microalga Phaeodactylum tricornutum", Eur. J. Lipid. Technol., 109, 120-126. https://doi.org/10.1002/ejlt.200600216
  15. Fogler, H.S. (2006), "Elements of chemical reaction engineering", 4th Edition, Prentice Hall, New Jersey.
  16. Francisco, E.C., Neves, D.B., Jacop-Lopes, E. and Franco, T.T. (2010), "Microalgae as feedstock for biodiesel production: carbon dioxide sequestration, lipid production and biofuel quality", J. Chem. Technol. Biotechnol., 85, 395-403. https://doi.org/10.1002/jctb.2338
  17. Geisert, M., Rose, T., Bauer, W. and Zahn, R.H. (1987), "Occurence of carotenoids and sporopollenin in Nanochlorum eucaryotum, a novel marine alga with unusual characteristics", Biosystems, 20, 133-142. https://doi.org/10.1016/0303-2647(87)90040-2
  18. Halim, R., Gladman, B., Danquah, M.K. and Webley, P.A. (2011), "Oil extraction from microalgae for biodiesel production", Bioresour. Technol., 102, 178-185. https://doi.org/10.1016/j.biortech.2010.06.136
  19. Henley, W.J., Hironaka, J.L., Guillou, L., Buchheim, M.A., Buchheim, J.A., Fawley, M.W. and Fawley, K.P. (2004), "Phylogenetic analysis of the 'Nannochloris-like' algae and diagnoses of Picochlorum oklahomensis gen. et sp. nov. (Trebouxiophyceae, Chlorophyta)", Phycologia, 43, 641-652. https://doi.org/10.2216/i0031-8884-43-6-641.1
  20. Huang, G.H., Chen, F., Wei, D., Zhang, X.W. and Chen, G. (2010), "Biodiesel production by microalgal biotechnology", Appl. Energy, 87, 38-46. https://doi.org/10.1016/j.apenergy.2009.06.016
  21. Jiang, L., Luo, S., Fan, X., Yang, Z. and Guo, R. (2011), "Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of $CO_2$", Appl. Energy, 88, 3336-3341. https://doi.org/10.1016/j.apenergy.2011.03.043
  22. Lepage, G. and Roy C.C. (1986), "Direct transesterification of all classes of lipids in a one-step reaction", J. Lipid Res., 27, 114-120.
  23. Li, Y.G., Xu, L., Huang, Y.M., Wang, F., Guo, C. and Liu C.Z. (2011), "Microalgal biodiesel in China: Opportunities and challenges", Appl. Energy, 88, 3432-3437. https://doi.org/10.1016/j.apenergy.2010.12.067
  24. Lutzu, G.A., Locci, A.M. and Cao G. (2012), "Effect of medium composition on the growth of Nannochloris eucaryotum in batch photobioreactors", J. Biobased Mater. Bio., 6, 94-100. https://doi.org/10.1166/jbmb.2012.1184
  25. Mallick, N., Mandal, S., Singh, A.K., Bishai, M. and Dash, A. (2011), "Green microalga Chlorella vulgaris as a potential feedstock for biodiesel", J. Chem. Technol. Biotechnol., 87, 137-145.
  26. Mata, T.M., Martins, A.A. and Caetano, N.S. (2010), "Microalgae for biodiesel production and other applications: A review", Renew Sustain. Energy, 14, 217-232. https://doi.org/10.1016/j.rser.2009.07.020
  27. Melis, A. (2009), "Solar energy conversion efficiencies in photosynthesis: Minimizing the chlorophyll antennae to maximize efficiency", Plant. Sci., 177, 130-135.
  28. Menzel, K. and Wild, A. (1989), "A comparative investigation of some Nannochloris species (Chlorococcales) with particular reference to the systematic position of Nannochloris eucaryotum", Bot. Acta, 102, 152-158. https://doi.org/10.1111/j.1438-8677.1989.tb00084.x
  29. Mitra, M. and Melis, A. (2008), "Optical proprieties of microalgae for enhanced biofuels production", Optics Express, 16, 21807-21820. https://doi.org/10.1364/OE.16.021807
  30. Mulbry, W., Kondrad, S., Pizarro, C. and Kebede-Westhead, E. (2008), "Treatment of dairy manure effluent using freshwater algae: Algal productivity and recovery of manure nutrients using pilot-scale algal turf scrubbers", Bioresour. Technol., 99, 8137-8142. https://doi.org/10.1016/j.biortech.2008.03.073
  31. Negoro, M., Shioji, N., Miyamoto, K. and Miura, Y. (1991), "Growth of microalgae in high $CO_2$ gas and effects of $SO_x$ and $NO_x$", Appl. Biochem. Biotechnol, 28/29, 877-886.
  32. Novick, A. and Szilard, L. (1950), "Description of the Chemostat", Science, 112, 715-716. https://doi.org/10.1126/science.112.2920.715
  33. Olguin, E.J. (2003), "Phycoremediation: Key issues for cost-effective nutrient removal processes", Biotechnol. Adv., 22, 81-91. https://doi.org/10.1016/S0734-9750(03)00130-7
  34. Papazi, A., Makridis. P., Divanach. P. and Kotzabasis, K. (2008), "Bioenergetic changes in the microalgal photosynthetic apparatus by extremely high $CO_2$ concentrations induce an intense biomass production", Physiol. Plantarum, 132, 338-349. https://doi.org/10.1111/j.1399-3054.2007.01015.x
  35. Phukan, M.M., Chutia, R.S., Konwar, B.K. and Kataki, R. (2011), "Microalgae Chlorella as a potential bio-energy feedstock", Appl. Energy, 88, 3307-3312. https://doi.org/10.1016/j.apenergy.2010.11.026
  36. Radakovits, R., Jinkerson, R.E., Darzins, A. and Posewitz, M.C. (2010), "Genetic engineering of algae for enhanced biofuel production", Eukaryot. Cell., 9, 486-501. https://doi.org/10.1128/EC.00364-09
  37. SAG Sammlung Von Algenkulturen Gottingen (2008), Online document Medium recipe-version 10, http://epsag.netcity.de/pdf/media_and_recipes/06_Brackish_water_medium.pdf.
  38. Sasi, D., Mitra, P., Vigueras, A. and Hill, G.A. (2011), "Growth kinetics and lipid production using Chlorella vulgaris in a circulating loop photobioreactor", J. Chem. Technol. Biotechnol., 86, 875-880. https://doi.org/10.1002/jctb.2603
  39. Sheehan, J., Dunahay, T., Benemann, J. and Roessler, P., (1998), A look back at the U.S. Department of Energy's Aquatic Species Program: Biodiesel from microalgae, National Renewable Energy Laboratory, NREL/TP-580-24190, USA.
  40. Singh, A., Olsen, S.I. and Singh Nigam, P. (2011), "A viable technology to generate third-generation biofuel", J. Chem. Technol. Biotechnol., 86 1349-1353. https://doi.org/10.1002/jctb.2666
  41. Sobczuk, T.M. and Chisti, Y. (2010), "Potential fuel oils from microalga Choricystis minor", J. Chem. Technol. Biotechnol., 85, 100-108. https://doi.org/10.1002/jctb.2272
  42. Tetali, S.D., Mitra, M. and Melis, A. (2007), "Development of the light-harvesting chlorophyll antenna in the green alga Chlamydomonas reinhardtii is regulated by the novel Tla1 gene", Planta, 225, 813-829. https://doi.org/10.1007/s00425-006-0392-z
  43. Torrey, M. (2008), "Algae in the tank", Int. News Fats Oils Relat. Mater., 19, 432-437.
  44. Usui, N. and Ikenouchi, M. (1997), "The biological $CO_2$ fixation and utilization project by RITE(1): Highly-effective photobioreactor system", Energy Conv. Manage., 38, 487-492. https://doi.org/10.1016/S0196-8904(96)00315-9
  45. Watanabe, Y., Ohmura, N. and Saiki, H. (1992), "Isolation and determination of cultural characteristics of microalgae which functions under $CO_2$ enriched atmosphere", Energy Convers. Manag., 33, 545-552 https://doi.org/10.1016/0196-8904(92)90054-Z
  46. Wilhelm, C. and Wild, A. (1982), "Growth and photosynthesis of Nanochlorum eucaryotum, a new and extremely small eucaryotic green alga", Z. Naturforsch C, 37c, 115-119.
  47. Yang, J., Xu, M., Zhang, X.Z., Hu, Q., Sommerfeld, M. and Chen, Y. (2011), "Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance", Bioresour. Technol., 102, 159-165. https://doi.org/10.1016/j.biortech.2010.07.017

Cited by

  1. A novel mathematical model to simulate the size-structured growth of microalgae strains dividing by multiple fission vol.287, 2016, https://doi.org/10.1016/j.cej.2015.11.021
  2. Progress and Challenges in Microalgal Biodiesel Production vol.7, 2016, https://doi.org/10.3389/fmicb.2016.01019
  3. Comprehensive modeling and investigation of the effect of iron on the growth rate and lipid accumulation of Chlorella vulgaris cultured in batch photobioreactors vol.153, 2014, https://doi.org/10.1016/j.biortech.2013.11.085
  4. Cultivation study of the marine microalga Picochlorum oculatum and outdoor deployment in a novel bioreactor for high-density production of algal cell mass vol.89, 2016, https://doi.org/10.1016/j.biombioe.2016.02.018
  5. Advances in photobioreactors for intensive microalgal production: configurations, operating strategies and applications vol.89, pp.2, 2014, https://doi.org/10.1002/jctb.4218
  6. Microalgae cultivation and metabolites production: a comprehensive review vol.12, pp.2, 2018, https://doi.org/10.1002/bbb.1864