References
- Allemang, R.J. and Brown, D.L. (1983), "A correlation coefficient for modal vector analysis", Proceedings of the 1st International Modal Analysis Conference, Union College, Orlando, Florida.
- Asmussen, J.C. (1997), Modal Analysis Based on the Random Decrement Technique, Ph.D. Thesis, Aalborg University, Aalborg, Denmark.
- Bedewi, N.E. (1986), The Mathematical Foundation of the Auto and Cross-Random Decrement Techniques and the Development of a System Identification Technique for the Detection of Structural Deterioration, Ph.D. Thesis, University of Maryland, College Park, Maryland, USA.
- Breitbach, E. (1973), "A semi-automatic modal survey test technique for complex aircraft and spacecraft structures", Proceedings of the 3rd ESRO Testing Symposium, Frascati, Italy.
- Cauberghe, B. (2004), Applied Frequency-Domain System Identification in the Field of Experimental and Operational Modal Analysis, Ph.D. Thesis, Vrije Universiteit Brussel, Brussels, Belgium.
- Cheng, F.Y. (2000), Matrix Analysis of Structural Dynamics Applications and Earthquake Engineering, Marcel Dekker, New York, USA.
- Cole, H.A. (1971), Method and apparatus for measuring the damping characteristic of a structure, United State Patent, No. 3,620,069.
- Fladung, W.A., Phillips, A.W. and Allemang, R.J. (2003), "Application of a generalized residual model to frequency domain modal parameter estimation", J. Sound Vib., 262(3), 677-705. https://doi.org/10.1016/S0022-460X(03)00117-2
- Gul, M. and Catbas, F.N. (2008), "Ambient vibration data analysis for structural identification and global condition assessment", J. Eng. Mech.- ASCE, 134(8), 650-662. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:8(650)
- Hart, G.C. and Wong, K. (2000), Structural Dynamics for Structural Engineers, John Wiley & Sons, New York, USA.
- He, J.M. and Fu, Z.F. (2001), Chapter 8. Modal analysis methods-frequency domain, Modal Analysis, Butterworth-Heinemann, Oxfort, UK, 174-176.
- Huang, C.S. and Yeh, C.H. (1999), "Some properties of randomdec signatures", Mech. Syst. Signal Pr., 13(3), 491-507. https://doi.org/10.1006/mssp.1998.0194
- Ibrahim, S.R. (1977), "Random decrement technique for modal identification of structures", AIAA J., 14(11), 696-700.
- James, G.H., Carne, T.G. and Lauffer, J.P. (1995), "The natural excitation technique (NExT) for modal parameter extraction from operating structures", J. Anal. Exper. Modal Anal., 10(4), 260-277.
- Jeary, A.P. (1986), "Damping in tall buildings - a mechanism and a predictor", Earthq. Eng. Struct. D., 14(5), 733-750. https://doi.org/10.1002/eqe.4290140505
- Ku, C.J. and Tamura, Y. (2009), "Rational fraction polynomial method and random decrement technique for force-excited acceleration responses", J. Struct. Eng.- ASCE, 135(9), 1134-1138. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:9(1134)
- Ku, C.J., Cermak, J.E., and Chou, L.S. (2007a), "Random decrement based method for modal parameter identification of a dynamic system using acceleration responses", J. Wind Eng. Ind. Aerod., 95(6), 389-410. https://doi.org/10.1016/j.jweia.2006.08.004
- Ku, C.J., Cermak, J.E. and Chou, L.S. (2007b), "Biased modal estimates from random decrement signatures of forced acceleration responses", J. Struct. Eng.- ASCE, 133(8), 1180-1185. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:8(1180)
- Ku, C.J. (2004), Random Decrement Based Method for Parameter Identification of Wind-Excited Building Models using Acceleration Responses, Ph.D. Thesis, Colorado State University, Fort Collins, Colorado, USA.
- Pintelon, R., Guillaume, P., Rolain, Y., Schoukens, J. and van Hamme, H. (1994), "Parametric identification of transfer functions in the frequency domain - a survey", IEEE T. Automat. Contr., 39(11), 2245-2259. https://doi.org/10.1109/9.333769
- Pirnia, J.D., Kijewski-Correa, T., Abdelrazaq, A., Chung, J. and Kareem, A. (2007), "Full-scale validation of wind-induced response of tall buildings: investigation of amplitude-dependence dynamic properties", Proceedings of the Structures Congress 2007: New Horizons and Better Practices, ASCE, Long Beach, California, USA, May, 38-47.
- Richardson, M.H. and Formenti, D.L. (1982), "Parameter estimation from frequency response measurements using rational fraction polynomials", Proceedings of the 1st International Modal Analysis Conference, Union College, Orlando, Florida.
- Rodrigues, J., Brincker, R. and Andersen, P. (2004), "Improvement of frequency domain output only modal identification from the application of the random decrement technique", Proceedings of the 22nd International Modal Analysis Conference, Dearborn, Michigan.
- Shih, C.Y., Tsuei, Y.G., Allemang, R.J. and Brown, D.L. (1988a), "A frequency domain global parameter estimation method for multiple reference frequency response measurements", Mech. Syst. Signal Pr., 2(4), 349-365. https://doi.org/10.1016/0888-3270(88)90059-3
- Shih, C.Y., Tsuei, Y.G., Allemang, R.J. and Brown, D.L. (1988b), "Complex mode indication function and its applications to spatial domain parameter estimation", Mech. Syst. Signal Pr., 2(4), 367-377. https://doi.org/10.1016/0888-3270(88)90060-X
- Tamura, Y. and Suganuma, S. (1996), "Evaluation of amplitude-dependence damping and natural frequency of buildings during strong winds", J. Wind Eng. Ind. Aerod., 59(2-3), 115-130. https://doi.org/10.1016/0167-6105(96)00003-7
- Vandiver, J.K., Dunwoody, A.B., Campbell, R.B. and Cook, M.F. (1982), "A mathematical basis for the random decrement vibration signature analysis technique", J. Mech. Design, 104, 307-313. https://doi.org/10.1115/1.3256341
Cited by
- Moment Lyapunov exponents of the Parametrical Hill's equation under the excitation of two correlated wideband noises vol.52, pp.3, 2014, https://doi.org/10.12989/sem.2014.52.3.525
- Structural identification of concrete arch dams by ambient vibration tests vol.1, pp.3, 2013, https://doi.org/10.12989/acc2013.1.3.227
- Constrained observability method in static structural system identification vol.25, pp.1, 2018, https://doi.org/10.1002/stc.2040
- Output-only structural parameter identification with evolutionary algorithms and correlation functions vol.29, pp.3, 2020, https://doi.org/10.1088/1361-665x/ab6ce9