References
- Abe, M., Park, G. and Inman, D.J. (2002), "Impedance-based monitoring of stress in thin structural members", Proceeding of the 11th International Conference on Adaptive Structures and Technologies, October 23-26, Nagoya, Japan.
- Annamdas, V.G.M. and Soh, C.K. (2007), "Three dimensional electromechanical impedance model I: Formulation of directional sum impedance", J. Aerospace Eng., American Society of Civil Engineers, 20(1), 53-62.
- Annamdas, V.G.M. and Soh, C.K. (2010), "Application of electromechanical impedance technique for engineering structures: Review and future issues", J. Intell. Mater. Syst. Struct., 21(1), 41-59. https://doi.org/10.1177/1045389X09352816
- Ayres, J.W., Lalande, F., Chaudhry, Z. and Rogers, C.A. (1998), "Qualitative Impedance-Based Health Monitoring of Civil Infrastructures", Smart Mater. Struct., 7(5), 599-605. https://doi.org/10.1088/0964-1726/7/5/004
- David, D.L.M. (2006), Development of an impedance method based wireless sensor node for monitoring of bolted joint preload, Master of Science Dissertation, University of California, San Diego, USA.
- Inman, D.J. and Grisso, B.L. (2006), "Towards autonomous sensing", Proceedings of the SPIE International Conference on Smart Structures and Materials, February 26-March 2, San Diego, CA, 6174, 248-254.
- Koo, K.Y., Park, S., Lee, J.J. and Yun, C.B. (2009), "Automated impedance-based structural health monitoring incorporating effective frequency shift for compensating temperature effects", J. Intell. Mater. Syst. Struct., 20(4), 367-377.
- Liang, C., Sun, F.P. and Rogers, C.A. (1994), "Coupled electro-mechanical analysis of adaptive material systems-determination of actuator power consumption and system energy transfer", J. Intell. Mater. Syst. Struct., 5(1), 12-20. https://doi.org/10.1177/1045389X9400500102
- Lim, Y.Y., Bhalla, S. and Soh, C.K. (2006), "Structural identification and damage diagnosis using self-sensing piezo-impedance transducers", Smart Mater. Struct., 15(4), 987-95. https://doi.org/10.1088/0964-1726/15/4/012
- Lim, Y. Y. and Soh, C.K. (2011) "Fatigue life estimation of a 1D aluminium beam under mode-I loading using the electromechanical impedance technique", Smart Mater. Struct., 20(12), 125001. https://doi.org/10.1088/0964-1726/20/12/125001
- Lim, Y.Y., and Soh, C.K. (2012) "Effect of varying axial load under fixed boundary condition on admittance signatures of electromechanical impedance Technique", J. Intell. Mater. Syst. Struct., 23(7), 815-826. https://doi.org/10.1177/1045389X12437888
- Mascarenas, D.L., Todd, M.D., Park, G. and Farrar, C.R. (2007), "Development of an impedance-based wireless sensor node for structural health monitoring", Smart Mater. Struct., 16(6), 2137-2145. https://doi.org/10.1088/0964-1726/16/6/016
- Min, J., Park, S. and Yun, C.B. (2010), "Impedance-based structural health monitoring using neural networks for autonomous frequency range selection", Smart Mater. Struct., 19(12), 125011 https://doi.org/10.1088/0964-1726/19/12/125011
- Ong, C.W., Yang, Y., Naidu, A.S.K., Lu, Y. and Soh, C.K. (2002), "Application of the electromechanical impedance method for the identification of in-situ stress in structures", Proceedings of the SPIE on Smart Structures, Devices and Systems, December 16-18, Melbourne.
- Park, G., Cudney, H.H. and Inman, D.J. (2000), "Impedance-based health monitoring of civil structural components", J. Infrastruct. Syst.-ASCE, 6(4), 153-160. https://doi.org/10.1061/(ASCE)1076-0342(2000)6:4(153)
- Park, G., Kabeya, K., Cudney, H.H. and Inman, D.J. (1999), "Impedance-based structural health monitoring for temperature varying applications", JSME Int. J., 42(2), 249-258. https://doi.org/10.1299/jsmeb.42.249
- Park, S., Lee, J.J., Inman, D.J. and Yun, C.B. (2008), "Electro-mechanical impedance based wireless structural health monitoring using PCA and k-means clustering algorithm", J. Intell. Mater. Syst. Struct., 19(4), 509-520. https://doi.org/10.1177/1045389X07077400
- Park, G., Sohn, H., Farrar, C.R. and Inman, D.J. (2003), "Overview of piezoelectric impedance-based health monitoring and path forward", Shock Vib., 35(5), 451-463. https://doi.org/10.1177/05831024030356001
- Park, S., Yun, C.B. and Inman, D.J. (2006), "Wireless structural health monitoring using an active sensing node", Int. J. Steel Struct., 6, 361-368.
- Park, S., Yun, C.B. and Inman, D.J. (2008), "Structural health monitoring using electro-mechanical impedance sensors", Fatigue Fract. Eng. M., 31(8), 714-724. https://doi.org/10.1111/j.1460-2695.2008.01248.x
- Shin, S.W., Qureshi, A.R., Lee, J.Y. and Yun, C.B. (2008), "Piezoelectric sensor based nondestructive active monitoring of strength gain in concrete", Smart Mater. Struct., 17(5), 055002. https://doi.org/10.1088/0964-1726/17/5/055002
- Soh, C.K., Tseng, K.K.H., Bhalla, S. and Gupta, A. (2000), "Performance of smart piezoceramic patches in health monitoring of a RC bridge", Smart Mater. Struct., 9(4), 533-542. https://doi.org/10.1088/0964-1726/9/4/317
- Yang, Y., Lim, Y.Y. and Soh, C.K. (2008), "Practical issues related to the application of the electromechanical impedance technique in the structural health monitoring of civil structures: I. Experiment", Smart Mater. Struct., 17(3), 035008. https://doi.org/10.1088/0964-1726/17/3/035008
- Yang, Y. and Miao, A. (2010) "Two-dimensional modeling of the effects of external vibration on the PZT impedance signature", Smart Mater. Struct., 19(6), 065031. https://doi.org/10.1088/0964-1726/19/6/065031
- Yun , C.B. and Min, J. (2010), "Smart sensing, monitoring, and damage detection for civil infrastructures", KSCE J. Civil Eng., 15(1), 1-14.
Cited by
- Monitoring concept for structural integration of PZT-fiber arrays in metal sheets: a numerical and experimental study 2018, https://doi.org/10.1080/19475411.2018.1434254
- Sensing of damage and substrate stress in concrete using electro-mechanical impedance measurements of bonded PZT patches vol.25, pp.9, 2016, https://doi.org/10.1088/0964-1726/25/9/095011
- Application of electromechanical impedance-based SHM for damage detection in bolted pipeline connection vol.31, pp.1, 2016, https://doi.org/10.1080/10589759.2015.1058376
- Assessment of human bones encompassing physiological decay and damage using piezo sensors in non-bonded configuration vol.28, pp.14, 2017, https://doi.org/10.1177/1045389X16672570
- A novel electromechanical impedance–based model for strength development monitoring of cementitious materials 2017, https://doi.org/10.1177/1475921717725028
- Towards more accurate numerical modeling of impedance based high frequency harmonic vibration vol.23, pp.3, 2014, https://doi.org/10.1088/0964-1726/23/3/035017
- Adhesive Defect Monitoring of Glass Fiber Epoxy Plate Using an Impedance-Based Non-Destructive Testing Method for Multiple Structures vol.17, pp.6, 2017, https://doi.org/10.3390/s17061439
- Non-destructive concrete strength evaluation using smart piezoelectric transducer—a comparative study vol.25, pp.8, 2016, https://doi.org/10.1088/0964-1726/25/8/085021
- Evaluation of peak-free electromechanical piezo-impedance and electromagnetic contact sensing using metamaterial surface plasmons for load monitoring vol.26, pp.1, 2017, https://doi.org/10.1088/0964-1726/26/1/015003
- A Parametric Study on Admittance Signatures of a PZT Transducer Under Free Vibration vol.22, pp.11, 2015, https://doi.org/10.1080/15376494.2013.864437
- Practical issues related to the application of piezoelectric based wave propagation technique in monitoring of concrete curing vol.152, 2017, https://doi.org/10.1016/j.conbuildmat.2017.06.163
- Electro-Mechanical Impedance (EMI)-Based Incipient Crack Monitoring and Critical Crack Identification of Beam Structures vol.25, pp.2, 2014, https://doi.org/10.1080/09349847.2013.848311
- Structural Stress Monitoring Based on Piezoelectric Impedance Frequency Shift vol.31, pp.6, 2018, https://doi.org/10.1061/(ASCE)AS.1943-5525.0000900
- Crack detection in rectangular plate by electromechanical impedance method: modeling and experiment vol.19, pp.4, 2013, https://doi.org/10.12989/sss.2017.19.4.361
- Piezoelectric-based monitoring of the curing of structural adhesives: a novel experimental study vol.28, pp.1, 2013, https://doi.org/10.1088/1361-665x/aaeea4
- A Perspective of Non-Fiber-Optical Metamaterial and Piezoelectric Material Sensing in Automated Structural Health Monitoring vol.19, pp.7, 2019, https://doi.org/10.3390/s19071490
- Characterization of Ultrasonic Energy Diffusion in a Steel Alloy Sample with Tensile Force Using PZT Transducers vol.19, pp.9, 2013, https://doi.org/10.3390/s19092185
- Assessment of wave modulus of elasticity of concrete with surface-bonded piezoelectric transducers vol.242, pp.None, 2020, https://doi.org/10.1016/j.conbuildmat.2020.118033
- Impedance-based structural health monitoring applied to steel fiber-reinforced concrete structures vol.42, pp.7, 2020, https://doi.org/10.1007/s40430-020-02458-4
- Monitoring of concrete curing using the electromechanical impedance technique: review and path forward vol.20, pp.2, 2013, https://doi.org/10.1177/1475921719893069