DOI QR코드

DOI QR Code

Recurrence plot entropy for machine defect severity assessment

  • Yan, Ruqiang (School of Instrument Science and Engineering, Southeast University) ;
  • Qian, Yuning (School of Instrument Science and Engineering, Southeast University) ;
  • Huang, Zhoudi (School of Instrument Science and Engineering, Southeast University) ;
  • Gao, Robert X. (Department of Mechanical Engineering, University of Connecticut)
  • Received : 2011.08.06
  • Accepted : 2012.10.16
  • Published : 2013.03.25

Abstract

This paper presents a nonlinear time series analysis technique for evaluating machine defect severity, based on the Recurrence Plot (RP) entropy. The RP entropy is calculated from the probability distribution of the diagonal line length in the recurrence plot, which graphically depicts a system's dynamics and provides a global picture of the autocorrelation in a time series over all available time-scales. Results of experimental studies conducted on a spindle-bearing test bed have demonstrated that, as the working condition of the bearing deteriorates due to the initiation and/or progression of structural damages, the frequency information contained in the vibration signal becomes increasingly complex, leading to the increase of the RP entropy. As a result, RP entropy can serve as an effective indicator for defect severity assessment of rolling bearings.

Keywords

References

  1. Asok, K., Rafal, S.L., Grzegorz, L. and Krzysztof, G. (2008), "Analysis of cycle-to-cycle pressure oscillations in a diesel engine", Mech. Syst. Signal Pr., 22(2), 362-373. https://doi.org/10.1016/j.ymssp.2007.07.015
  2. Donner, R., Scholz-Reiter, B. and Hinrichs, U. (2008), "Nonlinear characterization of the performance of production and logistic networks", J. Manuf. Syst., 27(2), 84-99. https://doi.org/10.1016/j.jmsy.2008.10.001
  3. Eckmann, J.P., Kamphorst, S.O. and Ruelle, D. (1987), "Recurrence plots of dynamic-systems", Europhys. Lett., 4(9), 973-977. https://doi.org/10.1209/0295-5075/4/9/004
  4. Fraser, A.M. and Swinney, H.L. (1986), "Independent coordinates for strange attractors from mutual information", Phys. Rev. A., 33(2), 1134-1140. https://doi.org/10.1103/PhysRevA.33.1134
  5. Gao, J.B. (1999) "Recurrence time statistics for chaotic systems and their applications", Phys. Rev. Lett., 83(16), 3178-3181. https://doi.org/10.1103/PhysRevLett.83.3178
  6. Gao, J.B. and Cai. H.Q. (2000), "On the structures and quantification of recurrence plots", Phys. Lett. A., 270(1-2), 75-87. https://doi.org/10.1016/S0375-9601(00)00304-2
  7. Grassberger, P. and Procaccia, I. (1983), "Measuring the strangeness of strange attractors", Physica D, 9(1-2), 189-208. https://doi.org/10.1016/0167-2789(83)90298-1
  8. Grzegorz, L., Tomasz, K., Jacek, C. and Dariusz, Z. (2007), "Cycle-to-cycle oscillations of heat release in a spark ignition engine", Meccanica, 42(5), 423-433. https://doi.org/10.1007/s11012-007-9066-6
  9. Inoue, E., Mitsuoka, M. and Rabbani, M. (2011), "Investigation of nonlinear vibration characteristics of agricultural rubber crawler vehicles", Ama-Agricultural Mechanization in Asia Africa and Latin America, 42(1), 89-93.
  10. Janjarasjitt, S., Ocak, H. and Loparo, K.A. (2008), "Bearing condition diagnosis and prognosis using applied dynamical analysis of machine vibration signal", J. Sound Vib., 317(1-2), 112-126. https://doi.org/10.1016/j.jsv.2008.02.051
  11. Jardine, A.K.S., Lin, D.M. and D Banjevic (2006), "A review on machinery diagnostics and prognostics implementing condition-based maintenance", Mech.Syst. Signal Pr., 20(7), 1483-1510. https://doi.org/10.1016/j.ymssp.2005.09.012
  12. Kantz, H. and Schreiber, T. (1997), Nonlinear Time Series Analysis, Cambridge University Press, UK.
  13. Kennel, M.B., Brown, R. and Abarbanel, H.D. (1992), "Determining embedding dimension for phase-space reconstruction using a geometrical construction", Phys. Rev. A., 45(6), 3403-3411. https://doi.org/10.1103/PhysRevA.45.3403
  14. Koebbe, M. and Mayer-Kress, G. (1992), "Use of recurrence plots in the analysis of time-series data, in: (Eds. M. Casdagli and S. Eubank)", Proceedings of the SFI Studies in the Science of Complexity, vol. XXI, Redwood City, Addison-Wesley, Reading, MA, 361-378.
  15. Kim, H.S., Eykholt, R. and Salas, J.D. (1999), "Nonlinear dynamics, delay times and embedding windows", Physica D, 127(1-2), 48-60. https://doi.org/10.1016/S0167-2789(98)00240-1
  16. Li, X., Ouyang, G., Yao, X. and Guan, X. (2004), "Dynamical characteristics of pre-epileptic seizures in rats with recurrence quantification analysis", Phys. Lett. A., 333(1-2), 164-171. https://doi.org/10.1016/j.physleta.2004.10.028
  17. Loparo, K.A. (2011), http://www.eecs.cwru.edu/laboratory/bearing/, (Accessed 2011).
  18. Marwan, N., Wessel, N., Meyerfeldt, U., Schirdewan, A. and Kurths, J. (2002), "Recurrence plot-based complexity and their application to heartrate variability data", Phys. Rev. E. , 66(2), 026702. https://doi.org/10.1103/PhysRevE.66.026702
  19. Marwan, N. (2003), Encounters with neighbors: current developments of concepts based on recurrence plots and their applications, Ph.D. Thesis, University of Potsdam, Potsdam.
  20. Marwan, N. and Meinke, A. (2004), "Extended recurrence plot analysis and its application to ERP data", Int. J. Bifurcat. Chaos, 14(2), 761-771. https://doi.org/10.1142/S0218127404009454
  21. Marwan, N., Carmen Romano, M., Thiel, M. and Kurths, J. (2007), "Recurrence plots for the analysis of complex systems", Phys. Report, 438(5-6), 237-329. https://doi.org/10.1016/j.physrep.2006.11.001
  22. Mhalsekar, S.D., Mohan, G., Rao, S.S. and Gangadharan, K.V. (2009), "Determination of transient and steady state cutting in face milling operation using recurrence quantification analysis", ARPN J. Eng. Appl.Sci., 4(10), 36-46.
  23. Nichols, J.M., Trickey, S.T. and Seaver, M. (2006), "Damage detection using multivariate recurrence quantification analysis", Mech. Syst. Signal Pr., 20(2), 421-437. https://doi.org/10.1016/j.ymssp.2004.08.007
  24. Schreiber, T. and Schmitz, A. (2000), "Surrogate time series", Physica D., 142(3-4), 346-382. https://doi.org/10.1016/S0167-2789(00)00043-9
  25. Shi, D.F., Tsung, F. and Unsworth, P.J. (2004), "Adaptive time-frequency decomposition for transient vibration monitoring of rotating machinery", Mech. Syst. Signal Pr., 18(1), 127-141. https://doi.org/10.1016/S0888-3270(03)00085-2
  26. Sinha J.K. (2006), "Bi-spectrum for identifying crack and misalignment in shaft of a rotating machine", Smart Struct. Syst., 2(1), 47-60. https://doi.org/10.12989/sss.2006.2.1.047
  27. Takens, F. (1981), "Detecting strange attractors in turbulence", Dynamical Systems and Turbulence, Lecture Notes in Mathematics, (Eds. Rand, D. A. and Young, L.S ), Springer-Verlag, Berlin, 366-381.
  28. Tao, X., Du, B. and Xu, Y. (2007) "Bearing fault diagnosis based on GMM model using Lyapunov exponent spectrum", Proceedings of the 33rd Annual Conference of the Industrial Electronics Society, Nov. 5-8.
  29. Theiler, J., Eubank, S., Longtin, A., Galdrikian, B. and Farmer, J.D. (1992), "Testing for nonlinearity in time series: the method of surrogate data", Physica D., 58(1-4), 77-83. https://doi.org/10.1016/0167-2789(92)90102-S
  30. Thiel, M., Romano, M.C., Kurths, J., Meucci, R., Allaria, E. and Arecchi, F.T. (2002), "Influence of observational noise on the recurrence quantification analysis", Physica D. ,171(3), 138-152. https://doi.org/10.1016/S0167-2789(02)00586-9
  31. Wang, S., Huang, W. and Zhu, Z.K. (2011), "Transient modling and parameter identification based on wavelet and correlation filtering for rotating machine fault diagnosis", Mech. Syst. Signal Pr., 25(4), 1299-1320. https://doi.org/10.1016/j.ymssp.2010.10.013
  32. Wang, X.S., Hu, J. and Gao, J.B. (2006), "Nonlinear dynamics of regenerative cutting processes-comparison of two models". Chaos, Soliton. Fract., 29(5), 1219-1228. https://doi.org/10.1016/j.chaos.2005.08.131
  33. Webber, C.L. and Zbilut, J.P. (1994), "Dynamical assessment of physiological systems and states using recurrence plot strategies", J. Appl. Physiol., 769(2), 965-973.
  34. Yan, R. and Gao, R. (2004), "Complexity as a measure for machine health evaluation", IEEE T. Instrum. Meas., 53(4), 1327-1334. https://doi.org/10.1109/TIM.2004.831169
  35. Yan, R. and Gao, R. (2007), "Approximate entropy as a diagnostic tool for machine health monitoring", Mech. Syst. Signal Pr., 21(2), 824-839. https://doi.org/10.1016/j.ymssp.2006.02.009
  36. Yan, R., Liu, Y. and Gao, R. (2010), "Correlation dimension analysis: a non-linear time series analysis for data processing", IEEE T. Instrum. Meas., 13(6), 19-25.
  37. Zbilut, J.P. (1998), "Detecting deterministic signals in exceptionally noisy environments using cross-recurrence quantification", Phys. Lett. A., 246(1-2), 122-128. https://doi.org/10.1016/S0375-9601(98)00457-5
  38. Zbilut, J.P. and Webber, C.L. (1992), "Embeddings and delays as derived from quantification of recurrence plots", Phys. Lett. A., 171(3-4), 199-203. https://doi.org/10.1016/0375-9601(92)90426-M
  39. Zbilut, J.P., Zaldivar-Comenges, J.M. and Strozzi, F. (2002), "Recurrence quantification based Liapunov exponents for monitoring divergence in experimental data", Phys. Lett. A., 297(3-4), 173-181. https://doi.org/10.1016/S0375-9601(02)00436-X

Cited by

  1. Prognostics and Health Management: A Review of Vibration Based Bearing and Gear Health Indicators vol.6, pp.2169-3536, 2018, https://doi.org/10.1109/ACCESS.2017.2774261
  2. Effects of Phase Shift Errors in Recurrence Plot for Rotating Machinery Fault Diagnosis vol.11, pp.2, 2013, https://doi.org/10.3390/app11020873
  3. Alternate Entropy Computations by Applying Recurrence Matrix Masking vol.24, pp.1, 2013, https://doi.org/10.3390/e24010016