References
- Allik, H. and Hughes, T.J.R. (1970), "Finite element method for piezo-electric vibration", Int. J. Numer. Meth. Eng., 2(2), 151-157. https://doi.org/10.1002/nme.1620020202
- Arora, J.S. (2004), Introduction to optimum design. 2nd edition, Elsevier academic press.
- Begg, D.W. and Liu. X. (2000), "On simultaneous optimization of smart structures-Part II: algorithms and examples", Comput. Method. Appl. M., 184(1), 25-37. https://doi.org/10.1016/S0045-7825(99)00317-5
- Bendsoe, M.P. (1989), "Optimal shape design as a material distribution problem", Struct. Optimization, 1(4), 193-202. https://doi.org/10.1007/BF01650949
- Bendsoe, M.P. and Kikuchi, N. (1988), "Generating optimal topologies in structural design using a homogenization method", Comput. Method. Appl. M., 71(2), 197-224. https://doi.org/10.1016/0045-7825(88)90086-2
- Bendsoe, M.P. and Sigmund, O. (1999), "Material interpolations in topology optimization", Arch. Appl. Mech., 69(9-10), 635-654. https://doi.org/10.1007/s004190050248
- Bendsoe, M.P. and Sigmund, O. (2003), Topology optimization: theory, methods and applications, Springer, Berlin.
- Benjeddou, A. (2000), "Advances in piezoelectric finite element modeling of adaptive structural elements: a survey", Comput. Struct., 76(1-3), 347-363. https://doi.org/10.1016/S0045-7949(99)00151-0
- Bordas, S.P.A., Rabczuk. T., Hung, N.X., Nguyen, V.P, Natarajan, S., Bog, T., Quan, D.M. and Hiep, N.V. (2010), "Strain smoothing in FEM and XFEM", Comput. Struct., 88(23-24), 1419-1443. https://doi.org/10.1016/j.compstruc.2008.07.006
- Carbonari, R.C., Nader, G. and Silva, E.C.N. (2006), "Experimental and numerical characterization of piezoelectric mechanisms designed using topology optimization", Int. ABCM symposium series in Mechatronics , 2, 425-432.
- Carbonari, R.C., Silva, E.C.N. and Nishiwaki, S. (2005), "Design of piezoelectric multi-actuated microtools using topology optimization", Smart Mater. Struct., 14(6) , 1431-1447. https://doi.org/10.1088/0964-1726/14/6/036
- Chang, S.J., Rogacheva, N.N. and Chou, C.C. (1995), "Analysis of methods for determining electromechanical coupling coefficients of piezoelectric elements", IEEE T. Ultrason. Ferr., 42(4), 630-640. https://doi.org/10.1109/58.393106
- Chen, J.S., Wu, C.T. and Yoon, S. Y. (2001), "A stabilized conforming nodal integration for Galerkin meshfree methods", Int. J. Numer. Meth. Eng., 50, 435-466. https://doi.org/10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A
- Choi, K.K. and Kim, N.H. (2005), Structural sensitivity analysis and optimization, Springer Science and Business Media, Inc., New York.
- Dai, K.Y., Liu, G.R. and Nguyen, T.T. (2007), "An n-sided polygonal smoothed finite element method (nSFEM), for solid mechanics", Finite Elem. Anal. Des., 43(11-12), 847-860. https://doi.org/10.1016/j.finel.2007.05.009
- Donoso, A.; Sigmund, O. (2009), "Optimization of piezoelectric bimorph actuators with active damping for static and dynamic loads", Struct. Multidiscip. O., 38(2), 171-183. https://doi.org/10.1007/s00158-008-0273-0
- Friend, J., Umeshima, A., Ishii, T., Nakamura, K. and Ueha, S. (2004), "A piezoelectric linear actuator formed from a multitude of bimorphs", Sensor. Actuat. A-Phys., 109(3), 242-251. https://doi.org/10.1016/j.sna.2003.10.040
- Huang, X. and Xie, Y.M. (2010), Evolutionary Topology Optimization of Continuum Structures Methods and Applications, John Wiley and Sons Ltd.
- Jensen, J.S. (2009), A Note on Sensitivity Analysis of Linear Dynamic Systems with Harmonic Excitation, Report. Department of Mechanical Engineering, Technical University of Denmark.
- Kang, Zh. and Wang, X. (2010), "Topology optimization of bending actuators with multilayer piezoelectric Material", Smart Mater. Struct., 19, 075018(11p). https://doi.org/10.1088/0964-1726/19/7/075018
- Kim, J.E., Kim, D.S., Ma, P.S. and Kim, Y.Y. (2010), "Multi-physics interpolation for the topology optimization of piezoelectric systems", Comput. Method. Appl. M., 199(49-52), 3153-3168. https://doi.org/10.1016/j.cma.2010.06.021
- Kogl, M. and Silva, E.C.N. (2005), "Topology optimization of smart structures: design of piezoelectric plate and shell actuators", Smart Mater. Struct., 14(2) , 387-399. https://doi.org/10.1088/0964-1726/14/2/013
- Liu, G.R., Dai, K.Y., Lim, K.M. and Gu, Y.T. (2003), "A radial point interpolation method for simulation of two-dimensional piezoelectric structures", Smart Mater. Struct., 12(2), 171-180. https://doi.org/10.1088/0964-1726/12/2/303
- Liu, G.R., Dai, K.Y. and Nguyen, T.T. (2007), "A smoothed finite element method for mechanics problems", Comput. Mech., 39(6), 859-877. https://doi.org/10.1007/s00466-006-0075-4
- Liu, G.R. and Nguyen, T.T. (2010), Smoothed finite element methods, CRC press, Taylor and Francis group.
- Liu, G.R., Nguyen, T.T., Dai, K.Y. and Lam, K.Y. (2007), "Theoretical aspects of the smoothed finite element method (SFEM)", Int. J. Numer. Meth. Eng., 71(8), 902-930. https://doi.org/10.1002/nme.1968
- Liu, G.R., Nguyen, T.T. and Lam, K.Y. (2009), "An edge-based smoothed finite element method (ES-FEM) for static, free and force vibration analyses of solids", J. Sound Vib., 320(4-5), 1100-1130. https://doi.org/10.1016/j.jsv.2008.08.027
- Liu, G.R., Nguyen, X.H. and Nguyen, T.T. (2010), "A theoretical study on the smoothed FEM (S-FEM) models: Properties, accuracy and convergence rates", Int. J. Numer. Meth. Eng., 84(10), 1222-1256. https://doi.org/10.1002/nme.2941
- Long, C.S., Loveday, P.W. and Groenwold, A.A. (2006), "Planar four node piezoelectric with drilling degrees of freedom", Int. J. Numer. Meth. Eng., 65(11), 1802-1830. https://doi.org/10.1002/nme.1524
- Nguyen, X.H., Liu, G.R., Nguyen, T.T. and Nguyen, C.T. (2009), "An edge-based smoothed finite element method for analysis of two-dimensional piezoelectric structures", Smart Mater. Struct., 18(6), 065015(12pp). https://doi.org/10.1088/0964-1726/18/6/065015
- Ohs, R.R. and Aluru, N.R. (2001), "Meshless analysis of piezoelectric devices", Comput. Mech., 27(1), 23-36. https://doi.org/10.1007/s004660000211
- Rozvany, G., Zhou, M. and Birker, T. (1992), "Generalized shape optimization without homogenization", Struct. Optimization, 4(3-4), 250-254. https://doi.org/10.1007/BF01742754
- Sadeghbeigi Olyaie, M., Razfar, M.R. and Kansa, E.J. (2011), "Reliability based topology optimization of a linear piezoelectric micromotor using the cell-based smoothed finite element method", CMES, 75(1), 43-88.
- Sigmund, O. (1994), Design of Material Structures Using Topology Optimization, Ph.D. Thesis, Department of Solid mechanics, Technical University of Denmark.
- Sigmund, O. (1997), "On the design of compliant mechanisms using topology optimization", Mech. Struct. Mach., 25(4), 495-526.
- Silva, E.C.N. (2003), "Topology optimization applied to the design of linear piezoelectric motors", Smart Mater. Struct., 14(4), 309-322.
- Silva, R.C.N. and Kikuchi, N. (1999), "Design of piezocomposite materials and piezoelectric transducers using topology optimization-part III", Arch. Comput. Method E., 6(4), 305-329. https://doi.org/10.1007/BF02818918
- Svanberg, K. (1987), "Method of moving asymptotes-a new method for structural optimization", Int. J. Numer. Meth. Eng., 24(2), 359-373. https://doi.org/10.1002/nme.1620240207
- Sze, K.Y., Yang, X.M. and Yao, L.Q. (2004), "Stabilized plane and axisymmetric piezoelectric finite element models", Finite Elem. Anal. Des. 40(9-10), 1105-1122. https://doi.org/10.1016/j.finel.2003.06.002
- Ueha, S. and Tomikawa, Y. (1993), Ultrasonic Motors-Theory and Applications. Monographs in Electrical and Electronic Engineering, 29, Clarendon Press, Oxford.
Cited by
- Design and evaluation of an experimental system for monitoring the mechanical response of piezoelectric energy harvesters vol.22, pp.2, 2018, https://doi.org/10.12989/sss.2018.22.2.133
- Topology optimization of multiphase elastic plates with Reissner-Mindlin plate theory vol.22, pp.3, 2013, https://doi.org/10.12989/sss.2018.22.3.249