References
- Allen, H.B. and Bulson, P.S. (1980), Background to buckling, McGraw-Hill, London.
- Annonymous (1971), Handbook of Structural Stability (Editors Column Research committee of Japan), S.S. Corona Pub co, Tokyo.
- Azhari, M. (1993), "Local and post-local buckling of plates and plate assemblies using finite strip method", Ph.D Thesis, The University of New South Wales, Kensington.
- Bradford, M.A. and Azhari, M. (1995), "Buckling of plates with different end conditions using the finite strip method", Comput. Struct, 56(1), 75-83. https://doi.org/10.1016/0045-7949(94)00528-B
- Bradford, M.A. and Azhari, M. (1997), "The use of bubble functions for the stability of plates with different end conditions", Eng. Struct, 19(2), 151-161. https://doi.org/10.1016/S0141-0296(96)00038-7
- Chehil, D.S. and Dua, S.S. (1973), "Buckling of rectangular plates with general variation in thickness", J. App. Mech. Trans, ASME, 40, 745-751. https://doi.org/10.1115/1.3423084
- Chen, W.F. and Lui, E.M. (1987), Structural stability theory and implementation, New York, Elsevier.
- Chung, M.S. and Cheung, Y.K. (1971), "Natural vibration of thin flat walled structures with different boundary conditions", J.Sound Vib., 18(3), 325-337. https://doi.org/10.1016/0022-460X(71)90705-X
- Eisenberger, M. and Alexandrov, A. (2003), "Buckling loads of variable thickness thin isotropic plates", Thin Wall. Struct., 41, 871-889. https://doi.org/10.1016/S0263-8231(03)00027-2
- Felix, D.H., Bambill, D.V. and Rossit, C.A. (2011), "A note on buckling and vibration of clamped orthotropic plate under in plane load", Struct. Eng. Mech., 39(1), 115-123. https://doi.org/10.12989/sem.2011.39.1.115
- Gambir, M.L. (2004), Stability Analysis and Design of Structures, Springer -Verlag, Berlin.
- Gupta, U.S., Lal, R. and Seema, S. (2006), "Vibration analysis of non homogenous circular plate of nonlinear thickness variation by differential quadrature method", J. Sound Vib., 298, 892-906. https://doi.org/10.1016/j.jsv.2006.05.030
- Hancock, G.J. (1978), "Local distortional and lateral buckling of I beams", J. Struct. Division, ASCE, 104, (ST11), 1787-1798.
- Harik, E., Liu, X. and Ekambaram, R. (1991), "Elastic stability of plats with varying rigidities", Comput. Struct., 38, 161-168. https://doi.org/10.1016/0045-7949(91)90094-3
- Hashami, S.H., Fadace, M. and Atashipour, S.R. (2011), "Study on the free vibration of thick functionally graded rectangular plate according to a new exact closed-form procedure", Compos. Struct, 93, 722-735. https://doi.org/10.1016/j.compstruct.2010.08.007
- Hwang, S.S. (1973), "Stability of plats with piecewise varying thickness", ASME, J. Appl. Mech., 1127- 1128.
- Leissa, A.W. (1973), "The free vibration of rectangular plates", J. Sound Vib., 31(3), 237-293.
- Matsunga, H. (2008), "Free vibration and stability of functionality graded plates according to a 2D higherorder deformation theory", Compos. Struct, 82, 499-512. https://doi.org/10.1016/j.compstruct.2007.01.030
- Navaneethakrishnan, P.V. (1968), "Buckling of non uniform plates: spline method", J. Eng. Mech., ASCE, 114(5), 893-898.
- Nerantzaki, M.S. and Katsikadalils, J.T. (1996), "Buckling of plates with variable thickness and analog equation solution", Eng. Anal. Bound. Elem., 18, 149-154. https://doi.org/10.1016/S0955-7997(96)00045-8
- Nie, G.J. and Zhong, Z. (2008), "Vibration analysis of functionality graded annular sectorial plates with simply supported radial edges", Compos. Struct., 84,167-176. https://doi.org/10.1016/j.compstruct.2007.07.003
- Przemieniecki, J.S. (1973), "Finite element analysis of local instability", AIAA. J., 11, 33-39. https://doi.org/10.2514/3.50433
- Sakiyama, T. and Huang, M. (1998), "Free vibration analysis of rectangular plates with variable thickness", Report of the Faculty of Eng., Nagasaki University, 28(51),163-171.
- Singh, J.P. and Dey, S.S. (1990), "Variational finite difference approach to buckling of plates of variable thickness", Comput. Struct., 36, 39-45. https://doi.org/10.1016/0045-7949(90)90172-X
- Subramanian, K., Elangovan, A. and Rajkumar, R. (1993), "Elastic stability of varying thickness plates using the finite element method", Comput. Struct., 48(4), 733-738. https://doi.org/10.1016/0045-7949(93)90267-H
- Szilard, R. (2004), Theory and applications of Plate analysis- classical and Numerical and Engineering methods,John-Wiley and sons, USA.
- Timoshenko, S.P. and Gere, J.M. (1961), Theory of Elastic stability, McGraw-Hill, New York.
- Wilson, J.A. and Rajasekaran, S. (2012), "Elastic stability of all edges simply supported, stepped and stiffened rectangular plate under uniaxial loading", Appl. Math. Model., 36, 5758-5772. https://doi.org/10.1016/j.apm.2012.01.020
- Wittrick, W.H. and Ellen, C.H. (1962), "Buckling of tapered rectangular plates in compression", Aeronaut Quart, 13, 308-326. https://doi.org/10.1017/S0001925900002547
- Xiang, Y. and Wang, C.M. (2002), "Exact buckling and vibration solutions for stepped rectangular plates", J. Sound Vib., 250(3), 503-517. https://doi.org/10.1006/jsvi.2001.3922
- Xiang, Y. and Wei, G.W. (2004), "Exact solutions for buckling and vibration of stepped rectangular Mindliln plates", Int. J. Solids Struct., 41, 279-294. https://doi.org/10.1016/j.ijsolstr.2003.09.007
- Xiang, Y. and Zhang, L. (2005), "Free vibration analysis of stepped circular Mindlin plates", J. Sound Vib., 280, 633-655. https://doi.org/10.1016/j.jsv.2003.12.017
- Xiang, Y. (2007), "Vibrations of plates with abrupt changes in properties", Analysis and Design of Plated Structures, 2, Dynamics, Ed. N.E. Shanmugam and C.M. Wang, 254-274.
- Yalcin, H.S., Arikoglu, A. and Ozkol, I. (2009), "Free vibration analysis of circular plates by differential transformation method", Appl.Math. Comput., 212, 377-386. https://doi.org/10.1016/j.amc.2009.02.032
- Yuan, J. and Dickinson, S.M. (1992), "The flexural vibration of rectangular plate systems approached by using artificial spring in the Rayleigh - Ritz method", J. Sound Vib., 159,39-55. https://doi.org/10.1016/0022-460X(92)90450-C
- Yuan, S. and Yin, Y. (1998), "Computation of elastic buckling loads of rectangular thin plates using the extended Kantorovich method", Comput. Struct., 66(6), 861-867. https://doi.org/10.1016/S0045-7949(97)00111-9
Cited by
- Buckling of symmetrically laminated quasi-isotropic thin rectangular plates vol.17, pp.3, 2014, https://doi.org/10.12989/scs.2014.17.3.305
- Buckling analysis in hybrid cross-ply composite laminates on elastic foundation using the two variable refined plate theory vol.55, pp.1, 2015, https://doi.org/10.12989/sem.2015.55.1.047
- Numerical analysis of FGM plates with variable thickness subjected to thermal buckling vol.19, pp.3, 2015, https://doi.org/10.12989/scs.2015.19.3.679
- Simplified dynamic analysis of stepped thickness rectangular plate structures by the assumed mode method vol.231, pp.1, 2017, https://doi.org/10.1177/1475090216630001
- Inelastic buckling and post-buckling behavior of gusset plate connections vol.22, pp.2, 2016, https://doi.org/10.12989/scs.2016.22.2.411
- Hygrothermal effects on the vibration and stability of an initially stressed laminated plate vol.56, pp.6, 2015, https://doi.org/10.12989/sem.2015.56.6.1041
- Analysis of non-homogeneous orthotropic plates using EDQM vol.61, pp.2, 2013, https://doi.org/10.12989/sem.2017.61.2.295
- Study on the effects of various mid-connections of x-brace on frame behavior vol.12, pp.4, 2017, https://doi.org/10.12989/eas.2017.12.4.449
- Eigenfrequencies of simply supported taper plates with cut-outs vol.63, pp.1, 2017, https://doi.org/10.12989/sem.2017.63.1.103
- Experimental study on partially-reinforced steel RHS compression members vol.63, pp.3, 2017, https://doi.org/10.12989/sem.2017.63.3.385
- Thermal buckling of FGM beams having parabolic thickness variation and temperature dependent materials vol.27, pp.6, 2013, https://doi.org/10.12989/scs.2018.27.6.777
- A coupled Ritz-finite element method for free vibration of rectangular thin and thick plates with general boundary conditions vol.28, pp.6, 2018, https://doi.org/10.12989/scs.2018.28.6.655
- Buckling of simply supported thin plate with variable thickness under bi-axial compression using perturbation technique vol.70, pp.5, 2013, https://doi.org/10.12989/sem.2019.70.5.525
- Exact solution for free vibration analysis of linearly varying thickness FGM plate using Galerkin-Vlasov’s method vol.235, pp.4, 2013, https://doi.org/10.1177/1464420720980491