참고문헌
- Andrianov, I.V., Awrejcewicz, J. and Manevitch, L.I. (2004), Asymptotical Mechanics of Thin-Walled Structures, Springer, Verlag Berlin Heidelberg, Germany.
- Awrejcewicz, J., Andrianov, I.V. and Manevitch, L.I. (1998), Asymptotic Approaches in Nonlinear Dynamics, Springer, Verlag Berlin Heidelberg, Germany.
- Amiro, I.Y. and Zarutsky, V.A. (1981), "Studies of the dynamics of ribbed shells", Appl. Mech., 17(11), 949-962.
- Ba datl, S.M., Ozkaya, E., Ozyiit, H.A. and Tekin, A. (2009), "Nonlinear vibrations of stepped beam systems using artificial neural networks", Struct. Eng. Mech., 33(1), 15-30. https://doi.org/10.12989/sem.2009.33.1.015
- Bayat, M., Pakar, I. and Domaiirry, G. (2012a), "Recent developments of some asymptotic methods and their applications for nonlinear vibration equations in engineering problems: a review", Latin American Journal of Solids and Structures, 9(2), 145-234.
- Bayat, M. and Pakar, I. (2013a), "On the approximate analytical solution to non-linear oscillation systems", Shock and vibration, 20(1), 43-52. https://doi.org/10.1155/2013/549213
- Bayat, M., Pakar, I., Shahidi, M., (2011), "Analysis of nonlinear vibration of coupled systems with cubic nonlinearity", Mechanika, 17(6), 620-629.
- Bayat, M., Pakar, I. and Bayat, M. (2013b), "On the large amplitude free vibrations of axially loaded Euler- Bernoulli beams", Steel and Composite Structures, 14(1), 73-83. https://doi.org/10.12989/scs.2013.14.1.073
- Bayat, M. and Pakar, I. (2012b), "Accurate analytical solution for nonlinear free vibration of beams", Structural Engineering and Mechanics, 43(3), 337-347. https://doi.org/10.12989/sem.2012.43.3.337
- Fu, Y.M., Zhang, J. and Wan, L.J. (2011), "Application of the energy balance method to a nonlinear oscillator arising in the microelectromechanical system (MEMS)", Curr Appl Phys., 11(3), 482-485. https://doi.org/10.1016/j.cap.2010.08.037
- Ganji, D.D., Bararnia, H., Soleimani, S. and Ghasemi, E, (2009), "Analytical solution of Magneto- Hydrodinamic flow over a nonlinear stretching sheet", Modern Physics Letters B, 23, 2541-2556. https://doi.org/10.1142/S0217984909020692
- Geng, L. and Cai, X.C. (2007), "He's frequency formulation for nonlinear oscillators", European Journal of Physics, 28(5), 923-93. https://doi.org/10.1088/0143-0807/28/5/016
- He, J.H. (2010a), "Hamiltonian approach to nonlinear oscillators", Physics Letters A., 374(23), 2312-2314. https://doi.org/10.1016/j.physleta.2010.03.064
- He, J.H., Zhong, T. and Tang, L. (2010b), "Hamiltonian approach to duffing-harmonic equation", Int. J. Nonlin. Sci. Num., 11(S1) 43-46.
- He, J.H. (2006), "Some asymptotic methods for strongly nonlinear equations", Int. J. Mod. Phys. B., 20(10), 1141-1199. https://doi.org/10.1142/S0217979206033796
- He, J.H. (2002), "Preliminary report on the energy balance for nonlinear oscillations", Mechanics Research Communications, 29(2), 107-111. https://doi.org/10.1016/S0093-6413(02)00237-9
- He, J.H. (2004), "Solution of nonlinear equations by an ancient chinese algorithm", Appl. Math. Compute. 151(1), 293-297. https://doi.org/10.1016/S0096-3003(03)00348-5
- He, J.H. (2008), "An improved amplitude-frequency formulation for nonlinear oscillators", Int. J. Nonlin. SCi. Numer. Simul., 9(2), 211-212.
- Jalaal, M., Ganji, D.D. and Ahmadi, G. (2010), "Analytical investigation on acceleration motion of a vertically falling spherical particle in incompressible Newtonian media", Advanced Powder Technology, 21(3), 298-304. https://doi.org/10.1016/j.apt.2009.12.010
- Koiter, W.T. (1966), "On the nonlinear theory of thin elastic shells", Proc. Kon. Ned. Ak. Wet, ser B, 69(1), 1-54.
- Konuralp, A. (2009), "The steady temperature distributions with different types of nonlinearities", Computers and Mathematics with Applications, 58(11-12), 2152-2159. https://doi.org/10.1016/j.camwa.2009.03.007
- Kural, S. and Ozkaya, E. (2012), "Vibrations of an axially accelerating, multiple supported flexible beam", Structural Engineering and Mechanics, 44(4), 521-538. https://doi.org/10.12989/sem.2012.44.4.521
- Liu, J.F. (2009), "He's variational approach for nonlinear oscillators with high nonlinearity", Computers and Mathematics with Applications, 58(11-12), 2423-2426. https://doi.org/10.1016/j.camwa.2009.03.074
- Manevitch, A.I. (1972), "Stability and optimal design of reinforced shells", Visha Shkola, Kiev-Donetzk. (in Russian)
- Oztur, B. and Coskun, S.B. (2011), "The Homotopy Perturbation Method for free vibration analysis of beam on elastic foundation'', Structural Engineering and Mechanics, 37(4), 415-425. https://doi.org/10.12989/sem.2011.37.4.415
- Pakar, I., Bayat, M. and Bayat, M. (2011), "Analytical evaluation of the nonlinear vibration of a solid circular sector object", Int. J. Phy. Sci. 6(30), 6861-6866.
- Pakar, I. and Bayat, M. (2012a), "Analytical study on the non-linear vibration of Euler-Bernoulli beams", Journal of vibroengineering, 14(1), 216-224.
- Pakar, I., Bayat, M. and Bayat, M. (2012b), "On the approximate analytical solution for parametrically excited nonlinear oscillators", Journal of Vibroengineering, 14(1), 423-429.
- Pakar, I. and Bayat, M. (2013), "An analytical study of nonlinear vibrations of buckled Euler_Bernoulli beams", Acta Physica Polonica A, 123(1), 48-52. https://doi.org/10.12693/APhysPolA.123.48
- Piccardo,G. and Tubino, F. (2012), "Dynamic response of Euler-Bernoulli beams to resonant harmonic moving loads", Structural Engineering and Mechanics, 44(5), 681-704. https://doi.org/10.12989/sem.2012.44.5.681
- Shen, Y.Y. and Mo, L.F. (2009), "The max-min approach to a relativistic equation", Comput. Math. Appl. 58, 2131-2133. https://doi.org/10.1016/j.camwa.2009.03.056
- Thongmoon, M. and Pusjuso, S. (2010), "The numerical solutions of differential transform method and the Laplace transform method for a system of differential equations", Nonlinear Analysis: Hybrid Systems, 4(3), 425-431 https://doi.org/10.1016/j.nahs.2009.10.006
- Xu, L. and He, J.H. (2010), "Determination of limit cycle by Hamiltonian approach for strongly nonlinear oscillators", Int. J. Nonlin. Sci. 11(12), 1097-1101.
- Zhang, H.L., Xu, Y.G. and Chang, J.R. (2009), "Application of He's energy balance method to a nonlinear oscillator with discontinuity", International Journal of Nonlinear Sciences and Numerical Simulation, 10 (2), 207-214.
- Zhang, H.L. (2008), "Application of He's frequency-amplitude formulation to an force nonlinear oscillator," Int. J. Nonlin. Sci. Numer. Simul., 9(3), 297-300. https://doi.org/10.1515/IJNSNS.2008.9.3.297
- Zarutsky, V.A. (1993), "Oscillations of ribbed shells", Inter. Appl. J. Mech., 29(10), 837-841. https://doi.org/10.1007/BF00855264
피인용 문헌
- On choice of initial guess in the variational iteration method and its applications to nonlinear oscillator vol.230, pp.6, 2016, https://doi.org/10.1177/0954408915569331
- Nonlinear Vibration Analysis Of Prebuckling And Postbuckling In Laminated Composite Beams vol.61, pp.2, 2015, https://doi.org/10.1515/ace-2015-0020
- Approximate analytical solution of nonlinear systems using homotopy perturbation method vol.230, pp.1, 2016, https://doi.org/10.1177/0954408914533104
- Accurate periodic solution for nonlinear vibration of thick circular sector slab vol.16, pp.5, 2014, https://doi.org/10.12989/scs.2014.16.5.521
- Accurate periodic solution for non-linear vibration of dynamical equations vol.7, pp.1, 2014, https://doi.org/10.12989/eas.2014.7.1.001
- A novel approximate solution for nonlinear problems of vibratory systems vol.57, pp.6, 2016, https://doi.org/10.12989/sem.2016.57.6.1039
- Nonlinear vibration of stringer shell: An analytical approach vol.229, pp.1, 2015, https://doi.org/10.1177/0954408913509090
- The analytic solution for parametrically excited oscillators of complex variable in nonlinear dynamic systems under harmonic loading vol.17, pp.1, 2014, https://doi.org/10.12989/scs.2014.17.1.123
- Nonlinear vibration of conservative oscillator's using analytical approaches vol.59, pp.4, 2016, https://doi.org/10.12989/sem.2016.59.4.671
- Nonlinear vibration of thin circular sector cylinder: An analytical approach vol.17, pp.1, 2014, https://doi.org/10.12989/scs.2014.17.1.133
- Vibration of electrostatically actuated microbeam by means of homotopy perturbation method vol.48, pp.6, 2013, https://doi.org/10.12989/sem.2013.48.6.823
- Study of complex nonlinear vibrations by means of accurate analytical approach vol.17, pp.5, 2014, https://doi.org/10.12989/scs.2014.17.5.721
- Nonlinear vibration of stringer shell by means of extended Hamiltonian approach vol.84, pp.1, 2014, https://doi.org/10.1007/s00419-013-0781-2
- Forced nonlinear vibration by means of two approximate analytical solutions vol.50, pp.6, 2014, https://doi.org/10.12989/sem.2014.50.6.853
- High conservative nonlinear vibration equations by means of energy balance method vol.11, pp.1, 2016, https://doi.org/10.12989/eas.2016.11.1.129
- Mathematical solution for nonlinear vibration equations using variational approach vol.15, pp.5, 2015, https://doi.org/10.12989/sss.2015.15.5.1311
- Analytical study of nonlinear vibration of oscillators with damping vol.9, pp.1, 2015, https://doi.org/10.12989/eas.2015.9.1.221
- Accurate analytical solutions for nonlinear oscillators with discontinuous vol.51, pp.2, 2014, https://doi.org/10.12989/sem.2014.51.2.349
- An accurate novel method for solving nonlinear mechanical systems vol.51, pp.3, 2014, https://doi.org/10.12989/sem.2014.51.3.519
- Nonlinear vibration of an electrostatically actuated microbeam vol.11, pp.3, 2014, https://doi.org/10.1590/S1679-78252014000300009
- Analytical solution for nonlinear vibration of an eccentrically reinforced cylindrical shell vol.14, pp.5, 2013, https://doi.org/10.12989/scs.2013.14.5.511
- Nonlinear vibration of Euler-Bernoulli beams resting on linear elastic foundation vol.15, pp.4, 2013, https://doi.org/10.12989/scs.2013.15.4.439
- Accurate semi-analytical solution for nonlinear vibration of conservative mechanical problems vol.61, pp.5, 2013, https://doi.org/10.12989/sem.2017.61.5.657
- Nonlinear Dynamic and Stability Analysis of an Edge Cracked Rotating Flexible Structure vol.21, pp.7, 2013, https://doi.org/10.1142/s0219455421500917
- Nonlinear Vibration of Axially Loaded Railway Track Systems Using Analytical Approach vol.40, pp.4, 2013, https://doi.org/10.1177/14613484211004190