DOI QR코드

DOI QR Code

Identification of isotropic and orthotropic constitutive parameters by FEA-free energy-based inverse characterization method

  • Shang, Shen (Department of Civil Engineering, The University of Akron) ;
  • Yun, Gun Jin (Department of Civil Engineering, The University of Akron) ;
  • Kunchum, Shilpa (Department of Electrical & Computer Engineering, The University of Akron) ;
  • Carletta, Joan (Department of Electrical & Computer Engineering, The University of Akron)
  • Received : 2011.03.31
  • Accepted : 2013.01.11
  • Published : 2013.02.25

Abstract

In this paper, identification of isotropic and orthotropic linear elastic material constitutive parameters has been demonstrated by a FEA-free energy-based inverse analysis method. An important feature of the proposed method is that it requires no finite element (FE) simulation of the tested material. Full-field displacements calculated using digital image correlation (DIC) are used to compute DIC stress fields enforcing the equilibrium condition and DIC strain fields using interpolation functions. Boundary tractions and displacements are implicitly recast into an objective function that measures the energy residual of external work and internal elastic strain energy. The energy conservation principle states that the residual should be zero, and so minimizing this objective function inversely identifies the constitutive parameters. Synthetic data from simulated testing of isotropic materials and orthotropic composite materials under 2D plane stress conditions are used for verification of the proposed method. When identifying the constitutive parameters, it is beneficial to apply loadings in multiple directions, and in ways that create non-uniform stress distributions. The sensitivity of the parameter identification method to noise in both the measured full-field DIC displacements and loadings has been investigated.

Keywords

References

  1. ASTM (2006), ASTM E74-06 Standard Practice of Calibration of Force-Measuring Instruments for Verifying the Force Indication of Testing Machines, ASTM.
  2. Avril, S., Bonnet, M., Bretelle, A.S., Grediac, M., Hild, F., Ienny, P., Latourte, F., Lemosse, D., Pagano, S., Pagnacco, E. and Pierron, F. (2008), "Overview of identification methods of mechanical parameters based on full-field measurements", Experimental Mechanics, 48(4), 381-402. https://doi.org/10.1007/s11340-008-9148-y
  3. Avril, S., Grediac, M. and Pierron, F. (2004), "Sensitivity of the virtual fields method to noisy data", Computational Mechanics, 34(6), 439-452. https://doi.org/10.1007/s00466-004-0589-6
  4. Avril, S., Huntley, J.M., Pierron, F. and Steele, D.D. (2008), "3D heterogeneous stiffness reconstruction using MRI and the virtual fields method", Experimental Mechanics, 48(4), 479-494. https://doi.org/10.1007/s11340-008-9128-2
  5. Avril, S. and Pierron, F. (2007), "General framework for the identification of constitutive parameters from full-field measurements in linear elasticity", International Journal of Solids and Structures, 44(14-15), 4978-5002. https://doi.org/10.1016/j.ijsolstr.2006.12.018
  6. Avril, S., Pierron, F., Pannier, Y. and Rotinat, R. (2008), "Stress reconstruction and constitutive parameter identification in plane-stress elasto-plastic problems using surface measurements of deformation fields", Experimental Mechanics, 48(4), 403-419. https://doi.org/10.1007/s11340-007-9084-2
  7. Besnard, N., Hild, F. and Roux, S. (2006), "Finite-element displacement fields analysis from digital images: application to portevin-le Chtelier bands", Experimental Mechanics, 46(6), 789-803. https://doi.org/10.1007/s11340-006-9824-8
  8. Calderon, A.P. (1980), "On an Inverse Boundary Value Problem", Seminar on Numerical Analysis and Its Applications to Continuum Physics, Rio de Janeiro.
  9. Chalal, H., Avril, S., Pierron, F. and Meraghni, F. (2006), "Experimental identification of a nonlinear model for composites using the grid technique coupled to the virtual fields method", Composites Part a-Applied Science and Manufacturing, 37(2), 315-325. https://doi.org/10.1016/j.compositesa.2005.04.020
  10. Claire, D., Hild, F. and Roux, S. (2004), "A finite element formulation to identify damage fields: the equilibrium gap method", International Journal for Numerical Methods in Engineering, 61(2), 189-208. https://doi.org/10.1002/nme.1057
  11. Constantinescu, A. and Tardieu, N. (2001), "On the identification of elastoviscoplastic constitutive laws from indentation tests", Inverse Problems in Engineering, 9(1), 19-44. https://doi.org/10.1080/174159701088027751
  12. Crouzeix, L., Perie, J.N., Collombet, F. and Douchin, B. (2009), "An orthotropic variant of the equilibrium gap method applied to the analysis of a biaxial test on a composite material", Composites Part a-Applied Science and Manufacturing, 40(11), 1732-1740. https://doi.org/10.1016/j.compositesa.2009.08.016
  13. Furukawa, T. and Michopoulos, J.G. (2008a), "Computational design of multiaxial tests for anisotropic material characterization", International Journal for Numerical Methods in Engineering, 74(12), 1872- 1895. https://doi.org/10.1002/nme.2243
  14. Furukawa, T. and Michopoulos, J.G. (2008b), "Online planning of multiaxial loading path for elastic material identification", Computer Methods in Applied Mechanics and Engineering, 197(9-12), 885-901. https://doi.org/10.1016/j.cma.2007.05.027
  15. Furukawa, T., Michopoulos, J.G. and Kelly, D.W. (2008), "Elastic characterization of laminated composites based on multiaxial tests", Composite Structures, 86(1-3), 269-278. https://doi.org/10.1016/j.compstruct.2008.03.043
  16. Geymonat, G. and Pagano, S. (2003), "Identification of mechanical properties by displacement field measurement: a variational approach", Meccanica, 38(5), 535-545. https://doi.org/10.1023/A:1024766911435
  17. Grediac, M. and Pierron, F. (2006), "Applying the virtual fields method to the identification of elasto-plastic constitutive parameters", International Journal of Plasticity, 22(4), 602-627. https://doi.org/10.1016/j.ijplas.2005.04.007
  18. Grediac, M., Pierron, F., Avril, S. and Toussaint, E. (2006), "The virtual fields method for extracting constitutive parameters from full-field measurements: a review", Strain, 42(4), 233-253. https://doi.org/10.1111/j.1475-1305.2006.00283.x
  19. Grediac, M. and Vautrin, A. (1990), "A new method for determination of bending rigidities of thin anisotropic plates", Journal of Applied Mechanics-Transactions of the Asme, 57(4), 964-968. https://doi.org/10.1115/1.2897668
  20. Hild, F. and Roux, S. (2006), "Digital image correlation: from displacement measurement to identification of elastic properties - a review", Strain, 42(2), 69-80. https://doi.org/10.1111/j.1475-1305.2006.00258.x
  21. Kajberg, J. and Lindkvist, G. (2004), "Characterization of materials subjected to large strains by inverse modelling based on in-plane displacement fields", International Journal of Solids and Structures, 41(13), 3439-3459. https://doi.org/10.1016/j.ijsolstr.2004.02.021
  22. Kajberg, J. and Wikman, B. (2007), "Viscoplastic parameter estimation by high strain-rate experiments and inverse modeling - speckle measurements and high-speed photography", International Journal of Solids and Structures, 44(1), 145-164. https://doi.org/10.1016/j.ijsolstr.2006.04.018
  23. Latourte, F., Chrysochoos, A., Pagano, S. and Wattrisse, B. (2008), "Elastoplastic behavior identification for heterogeneous loadings and materials", Experimental Mechanics, 48(4), 435-449. https://doi.org/10.1007/s11340-007-9088-y
  24. Lecompte, D., Smits, A., Sol, H., Vantomme, J. and Van Hemelrijck, D. (2007), "Mixed numericalexperimental technique for orthotropic parameter identification using biaxial tensile tests on cruciform specimens", International Journal of Solids and Structures, 44(5), 1643-1656. https://doi.org/10.1016/j.ijsolstr.2006.06.050
  25. Mahnken, R. (2000), "A comprehensive study of a multiplicative elastoplasticity model coupled to damage including parameter identification", Computers & Structures, 74(2), 179-200. https://doi.org/10.1016/S0045-7949(98)00296-X
  26. Moreau, A., Pagnacco, E., Borza, D. and Lemosse, D. (2006), "An evaluation of different mixed experimental/numerical procedures using FRF for the identification of viscoelastic materials", International conference on noise and vibration engineering ISMA, Leuven.
  27. Pagnacco, E., Lemosse, D., Hild, F. and Amiot, F. (2005). "Inverse strategy from displacement field measurement and distributed forces using FEA", SEM Annual Conference and Exposition on Experimental and Applied Mechanics, Poland.
  28. Pierron, F., Vert, G., Burguete, R., Avril, S., Rotinat, R. and Wisnom, M.R. (2007), "Identification of the orthotropic elastic stiffnesses of composites with the virtual fields method: sensitivity study and experimental validation", Strain, 43(3), 250-259. https://doi.org/10.1111/j.1475-1305.2007.00346.x
  29. Regez, B., Zhang, Y., Chu, T.C., Don, J. and Mahajan, A. (2008), "In-plane bulk material displacement and deformation measurements using digital image correlation of ultrasonic C-scan images", Structural Engineering and Mechanics, 29(1), 113-116. https://doi.org/10.12989/sem.2008.29.1.113
  30. Wilson, E.L. and Ibrahimbegovic, A. (1990), "Use of incompatible displacement modes for the calculation of element stiffnesses or stresses", Finite Elements in Analysis and Design, 7(3), 229-241. https://doi.org/10.1016/0168-874X(90)90034-C
  31. Yun, G.J., Ogorzalek, K.A., Dyke, S.J. and Song, W. (2009), "A two-stage damage detection approach based on subset of damage parameters and genetic algorithms", Smart Structures and Systems, 5(1), 1-21. https://doi.org/10.12989/sss.2009.5.1.001

Cited by

  1. Tensile and fracture characterization using a simplified digital image correlation test set-up vol.69, pp.4, 2013, https://doi.org/10.12989/sem.2019.69.4.467