DOI QR코드

DOI QR Code

Axisymmetrical bending of single- and multi-span functionally graded hollow cylinders

  • Bian, Z.G. (Ningbo Institute of Technology, Zhejiang University) ;
  • Wang, Y.H. (Ningbo Institute of Technology, Zhejiang University)
  • Received : 2011.08.19
  • Accepted : 2012.12.16
  • Published : 2013.02.10

Abstract

Single- and multi-span orthotropic functionally graded hollow cylinders subjected to axisymmetrical bending are investigated on the basis of a unified shear deformable shell theory, in which the transverse displacement is expressed by means of a general shape function. To approach the through-thickness inhomogeneity of the hollow cylinder, a laminated model is employed. The shape function therefore shall be determined for each fictitious layer. To improve the computational efficiency, we resort to a transfer matrix method. Based on the principle of minimum potential energy, equilibrium equations are established, which are then solved analytically using the transfer matrix method for arbitrary boundary conditions. Numerical comparisons among a third-order shear deformable shell theory, an exact elastic theory and the present theory are provided for a simply supported hollow cylinder, from which the present theory turns out to be superior in stress estimation. Distributions of displacements and stresses in single- and three-span hollow cylinders with different boundary conditions are also illustrated in numerical examples.

Keywords

Acknowledgement

Supported by : Zhejiang Provincial Natural Science Foundation of China, National Natural Science Foundation of China

References

  1. Abrate, S. and Foster, E. (1995), "Vibrations of composite plates with intermediate line supports", J. Sound. Vib., 179, 793-815. https://doi.org/10.1006/jsvi.1995.0053
  2. Andrews, M.G., Massabo, R., Cavicchi, A. and Cox, B.N. (2009), "Dynamic interaction effects of multiple delaminations in plates subject to cylindrical bending", Int. J. Solid. Struct., 46, 1815-1833. https://doi.org/10.1016/j.ijsolstr.2008.11.027
  3. Aghdam, M.M., Shahmansouri, N. and Bigdeli, K. (2011), "Bending analysis of moderately thick functionally graded conical panels", Compos. Struct., 93, 1376-1384. https://doi.org/10.1016/j.compstruct.2010.10.020
  4. Bahtui, A. and Eslami, M.R. (2007), "Coupled thermoelasticity of functionally graded cylindrical shells", Mech. Res. Comm., 34, 1-18. https://doi.org/10.1016/j.mechrescom.2005.09.003
  5. Bian, Z.G., Chen, W.Q., Lim, C.W. and Zhang, N. (2005), "Analytical solutions for single- and multi-span functionally graded plates in cylindrical bending", Int. J. Solid. Struct., 42, 6433-6456. https://doi.org/10.1016/j.ijsolstr.2005.04.032
  6. Bian, Z.G., Chen, W.Q. and Zhao, J. (2010), "Steady-state response and free vibration of an embedded imperfect smart functionally graded hollow cylinder filled with compressible fluid", Struct. Eng. Mech., 34, 449-474. https://doi.org/10.12989/sem.2010.34.4.449
  7. Bian, Z.G., Lim, C.W. and Chen, W.Q. (2006a), "On functionally graded beams with integrated surface piezoelectric layers", Compos. Struct., 72, 339-351. https://doi.org/10.1016/j.compstruct.2005.01.005
  8. Bian, Z.G., Ying, J., Chen, W.Q. and Ding, H.J. (2006b), "Bending and free vibration analysis of a smart functionally graded plate", Struct. Eng. Mech., 23, 97-113. https://doi.org/10.12989/sem.2006.23.1.097
  9. Chen, W.Q., Bian, Z.G. and Ding, H.J. (2003), "Three-dimensional analysis of a thick FGM rectangular plate in thermal environment", Journal of Zhejiang University SCIENCE A, 4, 1-7. https://doi.org/10.1631/jzus.2003.0001
  10. Chen, W.Q., Bian, Z.G. and Ding, H.J. (2004), "Three-dimensional vibration analysis of fluid-filled orthotropic FGM cylindrical shells", Int. J. Mech. Sci., 46, 159-171. https://doi.org/10.1016/j.ijmecsci.2003.12.005
  11. Cheung, Y.K. and Zhou, D. (1999), "Eigenfrequencies of tapered rectangular plates with intermediate line supports", Int. J. Solid. Struct., 36, 143-166. https://doi.org/10.1016/S0020-7683(97)00272-2
  12. Cheung, Y.K. and Zhou, D. (2000), "Vibrations of rectangular plates with elastic intermediate line-supports and edge constraints", Thin-Walled Structures, 37, 305-331. https://doi.org/10.1016/S0263-8231(00)00015-X
  13. Cheung, Y.K. and Zhou, D. (2001), "Vibration analysis of symmetrically laminated rectangular plates with intermediate line supports", Comput. Struct., 79, 33-41. https://doi.org/10.1016/S0045-7949(00)00108-5
  14. Huang, S.C. and Hsu, B.S. (1993), "Modal analysis of a spinning cylindrical shell with interior point or circular line supports", J. Vib. Acoust., 115, 535-543. https://doi.org/10.1115/1.2930383
  15. Lee, H.P. and Ng, T.Y. (1995), "Dynamic stability of a plate on multiple line and point supports subject to pulsating conservative in-plane loads", J. Sound. Vib., 185, 345-356. https://doi.org/10.1006/jsvi.1995.0383
  16. Li, Q.S. (2003), "An exact approach for free vibration analysis of rectangular plates with line-concentrated mass and elastic line-support", In.t J. Mech. Sci., 45, 669-685. https://doi.org/10.1016/S0020-7403(03)00110-3
  17. Li, S.R., Fu, X.H. and Batra, R.C. (2010), "Free vibration of three-layer circular cylindrical shells with functionally graded middle layer", Mech. Res. Comm., 37, 577-580. https://doi.org/10.1016/j.mechrescom.2010.07.006
  18. Liew, K. M., Kitipornchai S. and Xiang, Y. (1995), "Vibration of annular sector Mindlin plates with internal radial line and circumferential arc supports", J. Sound. Vib., 183, 401-419. https://doi.org/10.1006/jsvi.1995.0262
  19. Loy, C.T., Lam, K. Y. and Reddy, J. N. (1999), "Vibration of functionally graded cylindrical shells", Int. J. Mech. Sci., 41, 309-324. https://doi.org/10.1016/S0020-7403(98)00054-X
  20. Matsunaga, H. (2009), "Free vibration and stability of functionally graded circular cylindrical shells according to a 2D higher-order deformation theory", Compos. Struct., 88, 519-531. https://doi.org/10.1016/j.compstruct.2008.05.019
  21. Miyamoto, Y., Kaysser, W.A., Brain, B.H., Kawasaki, A. and Ford, R.G. (1999), Functionally graded materials: design, processing, and applications, Kluwer Academic Publishers, Dordrecht, Netherlands.
  22. Müller, E., Drašar, Č., Schilz, J. and Kaysser, W.A. (2003), "Functionally graded materials for sensor and energy applications", Mater. Sci. Eng., 362, 17-39. https://doi.org/10.1016/S0921-5093(03)00581-1
  23. Na, K.S. and Kim J.H. (2009), "Optimization of volume fractions for functionally graded panels considering stress and critical temperature", Compos. Struct., 89, 509-516. https://doi.org/10.1016/j.compstruct.2008.11.003
  24. Kadoli, R., Akhtar, K., and Ganesan, N. (2008), "Static analysis of functionally graded beams using higher order shear deformation theory", Appl. Math. Model., 32, 2509-2525. https://doi.org/10.1016/j.apm.2007.09.015
  25. Koizumi, M. (1997), "FGM activities in Japan", Compos. B. Eng., 28, 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9
  26. Kokini, K., DeJonge, J., Rangaraj, S. and Beardsley, B. (2002), "Thermal shock of functionally graded thermal barrier coatings with similar thermal resistance", Surf. Coating. Tech., 154, 223-231. https://doi.org/10.1016/S0257-8972(02)00031-2
  27. Kong, J. and Cheung, Y.K. (1995), "Vibration of shear-deformable plates with intermediate line supports: a finite layer approach", J. Sound. Vib., 184, 639-649. https://doi.org/10.1006/jsvi.1995.0338
  28. Pompe, W., Worch, H., Epple, M., Friess, W., Gelinsky, M., Greil, P., Hempel, U., Scharnweber, D. and Schulte, K. (2003), "Functionally graded materials for biomedical applications", Mater. Sci. Eng., 362, 40-60. https://doi.org/10.1016/S0921-5093(03)00580-X
  29. Pradhan, S.C., Loy, C.T., Lam, K.Y. and Reddy, J.N. (2000), "Vibration characteristics of functionally graded cylindrical shells under various boundary conditions", Appl. Acoust., 61, 111-129. https://doi.org/10.1016/S0003-682X(99)00063-8
  30. Qian, X.P. and Dutta, D. (2003), "Design of heterogeneous turbine blade", Comput. Aided. Des., 35, 319-329. https://doi.org/10.1016/S0010-4485(01)00219-6
  31. Soldatos, K.P. and Timarci, T. (1993), "A unified formulation of laminated composite, shear deformable, five-degrees-of-freedom cylindrical shell theories", Compos. Struct., 25, 165-171. https://doi.org/10.1016/0263-8223(93)90162-J
  32. Soldatos, K.P. and Watson, P. (1997), "A method for improving the stress analysis performance of one- and two-dimensional theories for laminated composites", Acta. Mech., 123, 163-186. https://doi.org/10.1007/BF01178408
  33. Vel, S.S. (2010), "Exact elasticity solution for the vibration of functionally graded anisotropic cylindrical shells", Compos. Struct., 92, 2712-2727. https://doi.org/10.1016/j.compstruct.2010.03.012
  34. Veletsos, A.S. and Newmark, N.M. (1956), "Determination of natural frequencies of continuous plates hinged along two opposite edges", J. Appl. Mech., 23, 97-102.
  35. Watari, F., Yokoyama, A., Omori, M., Hirai, T., Kondo, H., Uo, M. and Kawasaki, T. (2004), "Biocompatibility of materials and development to functionally graded implant for bio-medical application", Compos. Sci. Tech., 64, 893-908. https://doi.org/10.1016/j.compscitech.2003.09.005
  36. Woodward, B. and Kashtalyan, M. (2011), "Three-dimensional elasticity solution for bending of transversely isotropic functionally graded plates", Eur. J. Mech. Solid., 30, 705-718. https://doi.org/10.1016/j.euromechsol.2011.04.003
  37. Wu, L.H., Jiang, Z.Q. and Liu, J. (2005), "Thermoelastic stability of functionally graded cylindrical shells", Compos. Struct., 70, 60-68. https://doi.org/10.1016/j.compstruct.2004.08.012
  38. Xiang, Y., Zhao, Y.B. and Wei, G.W. (2002a), "Exact solutions for vibration of multi-span rectangular Mindlin plates", J. Vib. Acoust., 124, 545-551. https://doi.org/10.1115/1.1501083
  39. Xiang, Y., Zhao, Y.B. and Wei, G.W. (2002b), "Levy solutions for vibration of multi-span rectangular plates", In.t J. Mech. Sci., 44, 1195-1218. https://doi.org/10.1016/S0020-7403(02)00027-9
  40. Zhao, X., Lee, Y.Y. and Liew, K.M. (2009), "Thermoelastic and vibration analysis of functionally graded cylindrical shells", Int. J. Mech. Sci., 51, 694-707. https://doi.org/10.1016/j.ijmecsci.2009.08.001
  41. Zhou, D. (1994), "Eigenfrequencies of line supported rectangular plates". Int. J. Solid. Struct., 31, 347-358. https://doi.org/10.1016/0020-7683(94)90111-2

Cited by

  1. Three dimensional static and dynamic analysis of two dimensional functionally graded annular sector plates vol.51, pp.6, 2014, https://doi.org/10.12989/sem.2014.51.6.1067
  2. Dynamic analysis of non-symmetric FG cylindrical shell under shock loading by using MLPG method vol.67, pp.6, 2013, https://doi.org/10.12989/sem.2018.67.6.659
  3. Meshless Local Petrov-Galerkin (MLPG) method for dynamic analysis of non-symmetric nanocomposite cylindrical shell vol.74, pp.5, 2020, https://doi.org/10.12989/sem.2020.74.5.679