References
- Abraham, A. (2005), Rule-based expert systems, Sydenham PH, Thorn R Handbook of measuring system design, Wiley, New York.
- Alavi, N., Nozari, V., Mazloumzadeh, S.M. and Nezamabadi-pour, H. (2010), "Irrigation water quality evaluation using adaptive network-based fuzzy inference system", Paddy Water Environ, 8, 259-266. DOI 10.1007/s10333-010-0206-6.
- Bilgehan, M. (2011), "Comparison of ANFIS and NN models-with a study in critical buckling load estimation", Applied Soft Computing, 11, 3779-3791. https://doi.org/10.1016/j.asoc.2011.02.011
- Hakim, S.J.S., Noorzaei, J., Jaafar, M.S., Jameel, M. and Mohammadhassani, M. (2011), "Application of artificial neural networks to predict compressive strength of high strength concrete", International Journal of the Physical Sciences (IJPS), 6(5), 975-981.
- Herrera, F. and Lozano, M. (2003), "Fuzzy adaptive genetic algorithm: design, taxonomy, and future directions", Soft Comput., 7, 545-562. https://doi.org/10.1007/s00500-002-0238-y
- Hwang, S.J. and Lee, H.J. (2002), "Strength prediction for discontinuity regions failing in diagonal compressions by softened strut-and-tie model", J. Struct. Eng., ASCE, 128(12), 1519-1526. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:12(1519)
- Jang, J.S.R. (1993), "ANFIS: Adaptive network based fuzzy inference system", IEEE Transactions Systems, Man and Cybernetics, 23(3), 665-685. https://doi.org/10.1109/21.256541
- Lee, M.H. (2011), "Estimation of structure system input force using the inverse Fuzzy estimator", Structural Engineering and Mechanics, 37(4), 351-365. https://doi.org/10.12989/sem.2011.37.4.351
- Lee, M.H. and Chen, T.C. (2010), "Intelligent fuzzy weighted input estimation method for the input force on the plate structure", Structural Engineering and Mechanics, 34(1), 1-14. https://doi.org/10.12989/sem.2010.34.1.001
- Lu, W.Y., Hwang, S.J. and Lin, I.J. (2010), "Deflection prediction for reinforced concrete deep beams", Computers and Concrete., 7(1), 1-16. https://doi.org/10.12989/cac.2010.7.1.001
- Mazloumzadeh, S.M., Shamsi, M. and Nezamabadi-pour, H. (2010), "Fuzzy logic to classify date palm trees based on some physical properties related to precision agriculture", Precision Agric, 11, 258-273. DOI 10.1007/s11119-009-9132-2 .
- Mamdani, E. and Assilian, S. (1975), "An experiment in linguistic synthesis with a fuzzy logic controller", Int. J. Man Mach. Stud., 7(1),1-13. https://doi.org/10.1016/S0020-7373(75)80002-2
- Mohammadhassani, M., Jumaat, M.Z., Ashour, A. and Jameel, M. (2011), "Failure modes and serviceability of high strength self compacting concrete deep beams", Engineering Failure Analysis, 18, 2272-2281. https://doi.org/10.1016/j.engfailanal.2011.08.003
- Mohammadhassani, M., Jumaat, M.Z. and Jameel, M. (2012), "Experimental investigation to compare the modulus of rupture in high strength self compacting concrete deep beams and high strength concrete normal beams", Construction and Building Materials, 30, 265-273. https://doi.org/10.1016/j.conbuildmat.2011.12.004
- Mohammadhassani, M., Jumaat, M.Z., Jameel, M. and Arumugam, A.M.S. (2012a), "Ductility and performance assessment of High Strength Self Compacting Concrete (HSSCC) deep beams: an experimental investigation", Nuclear Engineering and Design, 250, 116-124. https://doi.org/10.1016/j.nucengdes.2012.05.005
- Mohammadhassani, M., NezamAbadiPour, H., Jumaat, M.Z., Jameel, M. and Arumugam, A.M.S. (2013), "Application of artificial neural network (ANN) and linear regressions (LR) in predicting the deflection of concrete deep beams", Computer and concrete, 11(3). (In print)
- Takagi, T. and Sugeno, M. (1985), "Fuzzy identification of systems and its applications to modeling and control", Systems, Man and Cybernetics, IEEE Transactions, 35(1), 116-132.
- Wilson, C.M.D. (2012), "Effects of multiple MR dampers controlled by Fuzzy-based strategies on structural vibration reduction", Structural Engineering and Mechanics, 41(3), 349-363. https://doi.org/10.12989/sem.2012.41.3.349
- Yang, K.H., Eun, H.C. and Chung, H.S. (2006), "The influence of web openings on the structural behaviour of reinforced high-strength concrete deep beams", Engineering Structures, 28,1825-1834. https://doi.org/10.1016/j.engstruct.2006.03.021
- Yilmaz, I. and Kaynar, O. (2011), "Multiple regression, ANN (RBF, MLP) and ANFIS models for prediction of swell potential of clayey soils", Expert Systems with Applications, 38, 5958-5966.
- Zadeh, L.A. (1965), "Fuzzy sets", Inform. Control, 8(3), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
Cited by
- Explicit expression for effective moment of inertia of RC beams vol.12, pp.3, 2015, https://doi.org/10.1590/1679-78251272
- Closed-form expressions for long-term deflections in high-rise composite frames vol.17, pp.1, 2017, https://doi.org/10.1007/s13296-016-0115-7
- Prediction of shear capacity of channel shear connectors using the ANFIS model vol.17, pp.5, 2014, https://doi.org/10.12989/scs.2014.17.5.623
- An evolutionary fuzzy modelling approach and comparison of different methods for shear strength prediction of high-strength concrete beams without stirrups vol.14, pp.5, 2014, https://doi.org/10.12989/sss.2014.14.5.785
- Effect of SnO 2 , ZrO 2 , and CaCO 3 nanoparticles on water transport and durability properties of self-compacting mortar containing fly ash: Experimental observations and ANFIS predictions vol.158, 2018, https://doi.org/10.1016/j.conbuildmat.2017.10.067
- Moisture damage evaluation in SBS and lime modified asphalt using AFM and artificial intelligence vol.28, pp.1, 2017, https://doi.org/10.1007/s00521-015-2041-6
- Structural damage detection of steel bridge girder using artificial neural networks and finite element models vol.14, pp.4, 2013, https://doi.org/10.12989/scs.2013.14.4.367
- Rapid prediction of deflections in multi-span continuous composite bridges using neural networks vol.15, pp.4, 2015, https://doi.org/10.1007/s13296-015-1211-9
- An intelligent based-model role to simulate the factor of safe slope by support vector regression pp.1435-5663, 2019, https://doi.org/10.1007/s00366-018-0677-4
- Time-Dependent Reliability Analysis of RC Deep Beams considering Linear/Nonlinear Creep and Shrinkage Using ANFIS Network and MCS vol.2019, pp.None, 2013, https://doi.org/10.1155/2019/2170701
- A Proposed Soft Computing Model for Ultimate Strength Estimation of FRP-Confined Concrete Cylinders vol.10, pp.5, 2013, https://doi.org/10.3390/app10051769