DOI QR코드

DOI QR Code

A review on recent development of vibration-based structural robust damage detection

  • Li, Y.Y. (Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong) ;
  • Chen, Y. (School of Mechatronics Engineering, University of Electronic Science and Technology of China)
  • 투고 : 2011.10.10
  • 심사 : 2012.12.01
  • 발행 : 2013.01.25

초록

The effect of structural uncertainties or measurement errors on damage detection results makes the robustness become one of the most important features during identification. Due to the wide use of vibration signatures on damage detection, the development of vibration-based techniques has attracted a great interest. In this work, a review on vibration-based robust detection techniques is presented, in which the robustness is considerably improved through modeling error compensation, environmental variation reduction, denoising, or proper sensing system design. It is hoped that this study can give help on structural health monitoring or damage mitigation control.

키워드

참고문헌

  1. Alvandi, A. and Cremona, C. (2006), "Assessment of vibration-based damage identification techniques", J. Sound Vib., 292(1-2), 179-202. https://doi.org/10.1016/j.jsv.2005.07.036
  2. Alvin, K.F. (1997), "Finite element model update via Bayesian estimation and minimization of dynamic residuals", AIAA J., 35(5), 879-886. https://doi.org/10.2514/2.7462
  3. Annamdas V.G.M. and Soh, C.K. (2010), "Application of electromechanical impedance technique for engineering structures: review and future Issues", J. Intel. Mat. Syst. Struct., 21(1), 41-59. https://doi.org/10.1177/1045389X09352816
  4. Antonino, M. and Fabrizio, V. (2008), "Dynamic methods for damage detection in structures", 499, 137-182, CISM International Centre for Mechanical Sciences, Springer, Wien-New York.
  5. Azarbayejani, M. et al. (2008), "A probabilistic approach for optimal sensor allocation in structural health monitoring", Smart Mater. Struct., 17(5), doi:10.1088/0964-1726/17/5/055019.
  6. Bakhtazad, Amid. Palazoglu, Ahmet. And Romagnoli, Jose. (2000), "Process trend analysis using waveletbased de-noising", Control Eng. Prac., 8(6), 657-663. https://doi.org/10.1016/S0967-0661(99)00197-5
  7. Beard, S. Liu, B. Oing, P. and Zhang, D. (2007), "Challenges in implementation of SHM, structural health monitoring 2007: quantification, validation, and implementation", In 6th International Workshop on Structural Health Monitoring, Stanford, CA, September.
  8. Bedrossian, H. and Masri, S.F. (2003), "Optimal placement of sensors & shakers for modal identification", Computational Stochastic Mechanics, Editors: Spanos P.D. and Deodatis G, Mill-press Science Publishers.
  9. Bemont, C.P. (2009), "The development of robust structural health monitoring sensors utilizing TRIP steel", IEEE Sensors J., 9(11), 1449-1455. https://doi.org/10.1109/JSEN.2009.2021801
  10. Cantwell, W.J. and Morton, J. (1992), "The significance of damage and defects and their detection in composite Mmaterials - a review", J. Strain Anal. Eng. Des., 27(1), 29-42. https://doi.org/10.1243/03093247V271029
  11. Cao, M.S. and Qiao, P.Z. (2008), "Integrated wavelet transform and its application to vibration mode shapes for the damage detection of beam-type structures", Smart Mater. Struct., 17(5), doi:10.1088/ 0964-1726/17/5/055014.
  12. Carden, E.P. and Brownjohn, J.M.W. (2008), "Fuzzy clustering of stability diagrams for vibration-based structural health monitoring", Comput. Aided civil Infra. Eng., 23(5), 360-372. https://doi.org/10.1111/j.1467-8667.2008.00543.x
  13. Carden, E.P. and Fanning, P. (2004), "Vibration based condition monitoring: a review", Struct. Health Monit., 3(4), 355-377. https://doi.org/10.1177/1475921704047500
  14. Casciati, F. and Casciati, S. (2006), "Structural health monitoring by Lyapunov exponents of non-linear time series", Struct. Control Health Monit., 2006, 13(1), 132-146. https://doi.org/10.1002/stc.141
  15. Chang, F.K. (1997), Structural Health Monitoring: Current Status and Perspectives, Technomic Publishing, Lancaster, Pennsylvania.
  16. Chen, B. and Nagarajaiah, S. (2008), "H-/H-infinity structural damage detection filter design using an iterative linear matrix inequality approach", Smart Mater. Struct., 17(3), doi:10.1088/0964-1726/17/3/035019.
  17. Chen, H.G. Yan, Y.J. and Jiang, J.S. (2007), "Vibration-based damage detection in composite wing-box structures by HHT", Mech. Sys. Signal Pr., 21(1), 307-321. https://doi.org/10.1016/j.ymssp.2006.03.013
  18. Chen, H.P. and Bicanic, N. (2010), "Identification of structural damage in buildings using iterative procedure and regularization method", Eng. Comput., 27(7-8), 930-50. https://doi.org/10.1108/02644401011082962
  19. Ciang, C.C. Lee, J.R. and Bang, H.J. (2008), "Structural health monitoring for a wind turbine system: a review of damage detection methods", Meas. Sci. Tech., 19(12), doi: 10.1088/0957-0233/19/12/ 122001.
  20. Clement, A. and Laurens, S. (2011), "An alternative to the Lyapunov exponent as a damage sensitive feature", Smart Mater. Struct., 20(2), doi:10.1088/0964-1726/20/2/025017.
  21. Delia, C.N. and Shu, D.W. (2007), "Vibration of delaminated composite laminates: a review", Appl. Mech. Rev., 60(1-6), 1-20. https://doi.org/10.1115/1.2375141
  22. Deng, X.M. and Wang, Q. (1998), "Crack detection using spatial measurements and wavelet analysis", Int. J. Fract., 91(2), 123-128.
  23. Devriendt, C. et al. (2010), "Structural health monitoring in changing operational conditions using transmissibility measurements", Shock Vib., 17(4-5), 651-675. https://doi.org/10.1155/2010/153273
  24. Doebling, S.W., Farrar, C.R. and Prime, M.B. (1998), "A summary review of vibration-based damage identification methods", Shock Vib. Digest, 30(2), 91-105. https://doi.org/10.1177/058310249803000201
  25. Fan, W. and Qiao, P.Z. (2009), "A 2D continuous wavelet transform of mode shape data for damage detection of plate structures", Int. J. Solids Struct., 46(25-26), 4379-95. https://doi.org/10.1016/j.ijsolstr.2009.08.022
  26. Fan, W. and Qiao P.Z. (2011), "Vibration-based damage identification methods: a review and comparative study", Struct. Health Monit., 10(1), 83-111. https://doi.org/10.1177/1475921710365419
  27. Faverjon, B. and Sinou, J.J. (2008), "Robust damage assessment of multiple cracks based on the frequency response function and the constitutive relation error updating method", J. Sound Vib., 312(4-5), 821-837. https://doi.org/10.1016/j.jsv.2007.11.024
  28. Figueiredo, E., Figueiras, J., Park, G., Farrar, C.R. and Worden, K. (2011), "Influence of the autoregressive model order on damage detection", Comput. Aided Civil Infra. Eng., 26(3), 225-238. https://doi.org/10.1111/j.1467-8667.2010.00685.x
  29. Frazier, W.G. et al. (2008), "Robust design for transducer selection and placement and structural damage detection", Proceedings of the Fourth European Workshop on Structural Health Monitoring, 890-898.
  30. Friswell, M.I. Penny, JET. and Garvey, S.D. (1998), "A combined genetic and eigensensitivity algorithm for the location of damage in structures", Comput. Struct., 69(5), 547-556. https://doi.org/10.1016/S0045-7949(98)00125-4
  31. Gandomi, A.H. Sahab, M.G. Rahaei, A. and Gorji, M.S. (2008), "Development in mode shape-based structural fault identification technique", World Appl. Sci. J., 5(1), 29-38.
  32. He, K. and Zhu, W.D. (2010), "Detection of damage and loosening of bolted connections in structures using changes in natural frequencies", Mater. Eval., 68(6), 721-732.
  33. Hsieh, K.H., Halling, M.W. and Barr, P.J. (2006), "Overview of vibrational structural health monitoring with representative case studies", J. Bridge Eng., 11(6), 707-715. https://doi.org/10.1061/(ASCE)1084-0702(2006)11:6(707)
  34. Hong, S.K., Epureanu, B.I. and Castanier, M.P. (2011), "Novel sensor placement for damage identification in a cracked complex structure with structural variability", J. Intell. Mater. Syst. Struct., 22(11), 1189-1202. https://doi.org/10.1177/1045389X11411217
  35. Hou, Z., Noori, M. and Amand, R.S.T. (2000), "Wavelet-based approach for structural damage detection", J. Eng. Mech., 126(7), 677-683. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:7(677)
  36. Jaishi, B. and Ren, W.X. (2007), "Finite element model updating based on eigenvalue and strain energy residuals using multi-objective optimization technique", Mech. Sys. Signal Pr., 21(5), 2295-2317. https://doi.org/10.1016/j.ymssp.2006.09.008
  37. Jiang, X.M., Mahadevan, S. and Adeli, H. (2007), "Bayesian wavelet packet denoising for structural system identification", Struct. Control Health Monit. 14(2), 333-356. https://doi.org/10.1002/stc.161
  38. Jung, S., Ok, S.Y. and Song, J.H. (2010), "Robust structural damage identification based on multi-objective optimization", Int. J. Num. Meth. Eng., 81(6), 786-804.
  39. Koh, C.G. and Perry, M.J. (2007), "Structural damage quantification by system identification", J. Earthq. Tsunami, 1(3), 211-231. https://doi.org/10.1142/S1793431107000134
  40. Li, Y.Y. (2010), "Hypersensitivity of strain-based indicators for structural damage identification: a review", Mech. Syst. Signal Pr., 24(3), 653-664. https://doi.org/10.1016/j.ymssp.2009.11.002
  41. Li, Y.Y. and Yam, L.H. (2001), "Sensitivity analyses of sensor locations for vibration control and damage detection of thin-plate systems", J. Sound Vib., 240(4), 623-636. https://doi.org/10.1006/jsvi.2000.3265
  42. Li, J.W. and Betti, R. (2004), "On-line identification and damage detection in non-linear structural systems using a variable forgetting factor approach", Earthquake Eng. Struct. Dynam., 33(4), 419-444. https://doi.org/10.1002/eqe.350
  43. Lin, R.J. and Cheng, F.P. (2008), "Multiple crack identification of a free-free beam with uniform material property variation and varied noised frequency", Eng. Struct., 30(4), 909-929. https://doi.org/10.1016/j.engstruct.2007.03.017
  44. Liu, X.H. and Paurobally, R. (2009), "Robust damage metric in terms of magnitude and phase for impedance-based structural health monitoring", Struct. Health Monit., 8(4), 303-311. https://doi.org/10.1177/1475921709102144
  45. Lu, Q.H. and Li, D.B. (1998), "Structural modification location identification method based on artificial neural network", J. Mech. Strength (in Chinese), 20(1),19-22.
  46. Lu, Y., Wang, X., Tang, J. and Ding, Y. (2008), "Damage detection using piezoelectric transducers and the lamb wave approach: II. robust and quantitative decision making", Smart Mater. Struct., 17(2), doi:10.1088/0964-1726/17/2/025034.
  47. Luo, H. and Hanagud, S. (1997), "Dynamic learning rate neural network training and composite structural damage detection", AIAA J., 35(9), 1522-1527. https://doi.org/10.2514/2.7480
  48. Masri, S.F., Nakamura, M., Chassiakos, A.G. and Caughey, T.K. (1996), "Neural network approach to detection of changes in structural parameters", J. Eng. Mech., 122(4), 350-360. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:4(350)
  49. Masri, S.F., Smyth, A.W., Chassiakos, A.G., Caughey, T.K. and Hunter, N.F. (2000), "Application of neural networks for detection of changes in nonlinear systems", J. Eng. Mech., 126(7), 666-676. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:7(666)
  50. Meo, M. and Zumpano, G. (2008), "Damage assessment on plate-like structures using a global-local optimization approach", Opti.Eng., 9(2), 161-177. https://doi.org/10.1007/s11081-007-9016-0
  51. Montalvao, M., Maia, N.M.M. and Ribeiro, A.M.R. (2006), "A review of vibration-based structural health monitoring with special emphasis on composite materials", Shock Vib. Digest, 38(4), 295-324. https://doi.org/10.1177/0583102406065898
  52. Nicknam, A. Hosseini, M.H. and Bagheri, A. (2011), "Damage detection and denoising in two-dimensional structures using curvelet transform by wrapping method", Archive Appl. Mech., 81(12), 1915-1924. https://doi.org/10.1007/s00419-011-0527-y
  53. Ostachowicz, W.M. (2008), "Damage detection of structures using spectral finite element method", Comput. Struct., 86(3-5), 454-462. https://doi.org/10.1016/j.compstruc.2007.02.004
  54. Ovanesova, A. And Suarez, L.E. (2004), "Applications of wavelet transforms to damage detection in frame structures", Eng. Struct., 26(1), 39-59. https://doi.org/10.1016/j.engstruct.2003.08.009
  55. Pakrashi, V., O'Connor, A. and Basu, B. (2007), "A study on the effects of damage models and wavelet bases for damage identification and calibration in beams", Comput. Aided Civil Infra. Eng., 22(8), 555-569. https://doi.org/10.1111/j.1467-8667.2007.00510.x
  56. Pandey, A.K., Biswas, M. and Samman, M.M. (1991), "Damage detection from changes in curvature mode shapes", J. Sound Vib., 145(2), 321-332. https://doi.org/10.1016/0022-460X(91)90595-B
  57. Park, S., Yun, C.B. and Roh, Y. (2007), "Damage diagnostics on a welded zone of a steel truss member using an active sensing network system", NDT & E Int., 40(1), 71-76. https://doi.org/10.1016/j.ndteint.2006.07.004
  58. Perera, R. and Ruiz, A. (2008), "A multistage FE updating procedure for damage identification in large-scale structures based on multiobjective evolutionary optimization", Mech. Sys. Signal Pr., 22(4), 970-991. https://doi.org/10.1016/j.ymssp.2007.10.004
  59. Reddy, K.V. and Ganguli, R. (2007), "Fourier analysis of mode shapes of damaged beams", Comput. Mater. Cont., 5(2), 79-97.
  60. Rus, G., Palma, R. and Perez-Aparicio, J.L. (2009), "Optimal measurement setup for damage detection in piezoelectric plates", Int. J. Eng. Sci., 47(4), 554-572. https://doi.org/10.1016/j.ijengsci.2008.09.006
  61. Salawu, O.S. (1997), "Detection of structural damage through changes in frequency: a review", Eng. Struct., 19(9), 718-723. https://doi.org/10.1016/S0141-0296(96)00149-6
  62. Savkin, A.V., Evans, R.J. and Skafidas, E. (2001), "The problem of optimal robust sensor scheduling", Sys. Control Letters, 43(2), 149-157. https://doi.org/10.1016/S0167-6911(01)00086-X
  63. Shi, Z.Y., Law, S.S. and Zhang, L.M. (2002), "Improved damage quantification from elemental modal strain energy change", J. Eng. Mech., 128(5), 521-529. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:5(521)
  64. Sohn, H., Farrar, C.R., Hemez, F.M., Shunk, D.D., Stinemates, D.W. and Nadler, B.R. (2003), "A review of structural health monitoring literature: 1996-2001", Technical Reports LA-13976-MS, Los Alamos National Laboratory.
  65. Sohn, H., Park, H.W., Laws, K.H. and Farrar, C.R. (2007), "Combination of a time reversal process and a consecutive outlier analysis for baseline-free damage diagnosis", J. Int. Mater. Sys. Struct., 18(4), 335-346. https://doi.org/10.1177/1045389X0606629
  66. Song, G.B., Gu, H.C. and Mo, Y.L. (2008), "Smart aggregates: multi-functional sensors for concrete structures - a tutorial and a review", Smart Mater. Struct., 17(3), doi:10.1088/0964-1726/17/3/033001.
  67. Soni, S. and Chattopadhyay, A. (2010), "Sensitivity studies on sensor selection for crack growth investigation", Smart Mater. Struct., 19(10), doi:10.1088/0964-1726/19/10/105015.
  68. Tsou, P.Y. and Shen, M.H.H. (1994), "Structural damage detection and identification using neural networks", AIAA J., 32(1), 176-183. https://doi.org/10.2514/3.11964
  69. Uhl, T., Ostachowicz, W. and Holnickiszulc J. (2008), "Damage detection by a real-parameter hybrid genetic algorithm", Proceedings of the 4th European Workshop on Structural Health Monitoring. pp.1072-1079.
  70. Vanlanduit, S., Parloo, E., Cauberghe, B. and Guillaume, P. (2005), "A robust singular value decomposition for damage detection under changing operating conditions and structural uncertainties", J. Sound Vib., 284(3-5), 1033-1050. https://doi.org/10.1016/j.jsv.2004.07.016
  71. Wang, K.W. and Tang, J. (2008), "Highly sensitive and robust damage detection of periodic structures with piezoelectric networking", Technical Report, (http://handle.dtic.mil/100.2/ ADA495424 ).
  72. Wang, W. and Jianu, O.A. (2010), "A smart sensing unit for vibration measurement and monitoring", IEEETran. Mechatronics. 15(1), 70-78.
  73. Wang, X.M., Foliente, G., Su, Z.Q. and Ye, L. (2006), "Multilevel decision fusion in a distributed active sensor network for structural damage detection", Struct. Health Monit., 5(1), 45-58. https://doi.org/10.1177/1475921706057981
  74. Wang, Z., Lin, R.M. and Lim, M.K. (1997), "Structural damage detection using measured FRF data", Comput. Methods Appl. Mech. Eng., 147(1-2), 187-197. https://doi.org/10.1016/S0045-7825(97)00013-3
  75. Wild, G. and Hinckley, S. (2008), "Acousto-ultrasonic optical fiber sensors: overview and state-of-the-art", IEEE Sensors J., 8(7-8), 1184-1193. https://doi.org/10.1109/JSEN.2008.926894
  76. Worden, K., Farrar, C.R., Haywood, J. and Todd, M. (2008), "A review of nonlinear dynamics applications to structural health monitoring", Struct. Cont. Health Monit., 15(4), 540-567. https://doi.org/10.1002/stc.215
  77. Wu, Y.J., Shi, X.Z. and Zhuang, T.G. (2000), "Fusion of wavelet packets and neural network in detection of composites", AIAA J., 38(6), 1063-1069. https://doi.org/10.2514/2.1068
  78. Xu, G.Y., Zhu, W.D. and Emory, B.H. (2007), "Experimental and numerical investigation of structural damage detection using changes in natural frequencies", J. Vib. Acoust., 129(6), 686-700. https://doi.org/10.1115/1.2731409
  79. Xu, H.P. and Humar, J. (2006), "Damage detection in a girder bridge by artificial neural network technique", Comput. Aided Civil Infra. Eng., 21(6), 450-464. https://doi.org/10.1111/j.1467-8667.2006.00449.x
  80. Yan, G.R. and Dyke, S.J. (2010), "Structural damage detection robust against time synchronization errors", Smart Mater. Struct., 19(6), doi:10.1088/0964-1726/19/6/065001.
  81. Yoder, N.C. and Adams, D.E. (2010), "Vibro-acoustic modulation utilizing a swept probing signal for robust crack detection", Struct. Health Monit., 9(3), 257-267. https://doi.org/10.1177/1475921710365261
  82. Yu, L. and Yin, T. (2010), "Damage identification in frame structures based on FE model updating", J. Vib. Acoust., 132(5), doi: 10.1115/1.4002125.
  83. Zhang, J., Tadanobu, S. and Lai, S. (2006), "Support vector regression for on-line health monitoring of large-scale structures", Struct. Safety, 28(4), 392-406. https://doi.org/10.1016/j.strusafe.2005.12.001
  84. Zhang, Q.W. (2007), "Statistical damage identification for bridges using ambient vibration data", Comput. Struct., 85(4-5), 476-485. https://doi.org/10.1016/j.compstruc.2006.08.071
  85. Zheng, S.J., Li, Z.Q. and Wang, H.T. (2009), "Research on delamination monitoring for composite structures based on HHGA-WNN", Appl. Soft Comput., 9(3), 918-923. https://doi.org/10.1016/j.asoc.2008.11.008
  86. Zhou, G. and Sim, L.M. (2002), "Damage detection and assessment in fibre-reinforced composite structures with embedded fibre optic sensors - review", Smart Mater. Struct., 11(6), 925-939. https://doi.org/10.1088/0964-1726/11/6/314
  87. Zhou, H.F., Ni, Y.Q. and Ko, J.M. (2011), "Eliminating temperature effect in vibration-based structural damage detection", J. Eng. Mech.-ASCE, 137(12), 785-796. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000273
  88. Zou, Y., Tong, L. and Steven, G.P. (2000), "Vibration-based model-dependent damage (delamination) identification and health monitoring for composite structures - a review", J. Sound Vib., 230(2), 357-378. https://doi.org/10.1006/jsvi.1999.2624

피인용 문헌

  1. Detection of delamination in laminated composites with limited measurements combining PCA and dynamic QPSO vol.86, 2015, https://doi.org/10.1016/j.advengsoft.2015.04.005
  2. An On-line Integration Technique for Structural Damage Detection and Active Optimal Vibration Control vol.14, pp.05, 2014, https://doi.org/10.1142/S0219455414400033
  3. Damage identification of 2D and 3D trusses by using complete and incomplete noisy measurements vol.52, pp.1, 2014, https://doi.org/10.12989/sem.2014.52.1.149
  4. Improving substructure identification accuracy of shear structures using virtual control system vol.27, pp.2, 2018, https://doi.org/10.1088/1361-665X/aaa46f
  5. Detection and parametric identification of structural nonlinear restoring forces from partial measurements of structural responses vol.54, pp.2, 2015, https://doi.org/10.12989/sem.2015.54.2.291
  6. Real-time simultaneous identification of structural systems and unknown inputs without collocated acceleration measurements based on MEKF-UI 2017, https://doi.org/10.1016/j.measurement.2017.07.001
  7. Damage diagnostic technique combining POD with time-frequency analysis and dynamic quantum PSO vol.50, pp.6, 2015, https://doi.org/10.1007/s11012-015-0106-3
  8. Vibration based damage detection in a scaled reinforced concrete building by FE model updating vol.14, pp.1, 2014, https://doi.org/10.12989/cac.2014.14.1.073
  9. Fast Warning Method for Rigid Hangers in a High-Speed Railway Arch Bridge Using Long-Term Monitoring Data vol.31, pp.6, 2017, https://doi.org/10.1061/(ASCE)CF.1943-5509.0001097
  10. Online damage detection using recursive principal component analysis and recursive condition indicators vol.26, pp.8, 2017, https://doi.org/10.1088/1361-665X/aa7220
  11. Nonlinear damage detection using higher statistical moments of structural responses vol.54, pp.2, 2015, https://doi.org/10.12989/sem.2015.54.2.221
  12. Hand arm vibration measurement using micro-accelerometer in different brick structures vol.13, pp.6, 2014, https://doi.org/10.12989/sss.2014.13.6.959
  13. Data fusion based improved Kalman filter with unknown inputs and without collocated acceleration measurements vol.18, pp.3, 2016, https://doi.org/10.12989/sss.2016.18.3.375
  14. Real-time unified single- and multi-channel structural damage detection using recursive singular spectrum analysis pp.1741-3168, 2018, https://doi.org/10.1177/1475921718760483
  15. A direct damage detection method using Multiple Damage Localization Index Based on Mode Shapes criterion vol.49, pp.2, 2014, https://doi.org/10.12989/sem.2014.49.2.183
  16. Probabilistic damage detection of structures with uncertainties under unknown excitations based on Parametric Kalman filter with unknown Input vol.63, pp.6, 2013, https://doi.org/10.12989/sem.2017.63.6.779
  17. On-line integration of structural identification/damage detection and structural reliability evaluation of stochastic building structures vol.63, pp.6, 2017, https://doi.org/10.12989/sem.2017.63.6.789
  18. A novel PSO-based algorithm for structural damage detection using Bayesian multi-sample objective function vol.63, pp.6, 2017, https://doi.org/10.12989/sem.2017.63.6.825
  19. A structural model updating method using incomplete power spectral density function and modal data vol.68, pp.1, 2013, https://doi.org/10.12989/sem.2018.68.1.039
  20. First-Order Eigen-Perturbation Techniques for Real-Time Damage Detection of Vibrating Systems: Theory and Applications vol.71, pp.6, 2013, https://doi.org/10.1115/1.4044287
  21. Multi-constrained optimization combining ARMAX with differential search for damage assessment vol.72, pp.6, 2013, https://doi.org/10.12989/sem.2019.72.6.689
  22. Condition Assessment of Tower and Mast Structures Monitored within One Cluster under Changing Environments vol.2020, pp.None, 2013, https://doi.org/10.1155/2020/8820104
  23. Multi-strategy structural damage detection based on included angle of vectors and sparse regularization vol.75, pp.4, 2013, https://doi.org/10.12989/sem.2020.75.4.415