참고문헌
- ACI (2005), "318-05, Building Code Requirements for Structural Concrete and Commentary", American Concrete Institute International.
- Aguilar Madeira, J., Rodrigues, H. and Pina, H. (2005), "Multi-objective optimization of structures topology by genetic algorithms", Adv. Eng. Softw., 36(1), 21-28. https://doi.org/10.1016/j.advengsoft.2003.07.001
- Aydogdu, I. and Saka, M. (2012), "Ant colony optimization of irregular steel frames including elemental warping effect", Adv. Eng. Softw., 44(1), 150-169. https://doi.org/10.1016/j.advengsoft.2011.05.029
- Bowles, J. (1982), Foundation analysis and design, McGraw-Hill, New York.
- Camp, C., Pezeshk, S. and Cao, G. (1998), "Optimized design of two-dimensional structures using a genetic algorithm", J. Struct. Eng., 124(5), 551-559. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:5(551)
- Camp, C.V. and Akin, A. (2012), "Design of Retaining Walls Using Big Bang‐Big Crunch Optimization", J. Struct. Eng., 138(3), 438-448. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000461
- Camp, C.V., Bichon, B.J. and Stovall, S.P. (2005), "Design of steel frames using ant colony optimization", J. Struct. Eng., 131(3), 369-379. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:3(369)
- Degertekin, S. (2011), "Improved harmony search algorithms for sizing optimization of truss structures", Comput. Struct., (92-93), 229-241. https://doi.org/10.1109/SNPD.2011.15
- Degertekin, S. (2012), "Optimum design of geometrically non-linear steel frames using artificial bee colony algorithm", Steel Compos. Struct, 12(6), 505-522. https://doi.org/10.12989/scs.2012.12.6.505
- Dogan, E. and Saka, M. (2012), "Optimum design of unbraced steel frames to LRFD-AISC using particle swarm optimization", Adv. Eng. Softw., 46(1), 27-34. https://doi.org/10.1016/j.advengsoft.2011.05.008
- Hasançebi, O., Carbas, S. and Saka, M.P. (2010), "Improving the performance of simulated annealing in structural optimization", Struct. Multidiscip. Optim., 41(2), 189-203. https://doi.org/10.1007/s00158-009-0418-9
- Hasançebi, O. and Erbatur, F. (2002), "Layout optimisation of trusses using simulated annealing", Adv. Eng. Softw., 33(7), 681-696. https://doi.org/10.1016/S0965-9978(02)00049-2
- Khajehzadeh, M., Taha, M.R., El-Shafie, A. and Eslami, M. (2011), "Modified particle swarm optimization for optimum design of spread footing and retaining wall", J. Zhejiang Univ. Sci A, 12(6), 415-427. https://doi.org/10.1631/jzus.A1000252
- Lee, K.S. and Geem, Z.W. (2004), "A new structural optimization method based on the harmony search algorithm", Comput. Struct., 82(9), 781-798. https://doi.org/10.1016/j.compstruc.2004.01.002
- Perez, R. and Behdinan, K. (2007), "Particle swarm approach for structural design optimization", Comput. Struct., 85(19-20), 1579-1588. https://doi.org/10.1016/j.compstruc.2006.10.013
- Rahnamayan, S., Tizhoosh, H.R. and Salama, M. (2008), "Opposition versus randomness in soft computing techniques", Appl. Soft Comput., 8(2), 906-918. https://doi.org/10.1016/j.asoc.2007.07.010
- Rashedi, E., Nezamabadi-pour, H. and Saryazdi, S. (2009), "GSA: a gravitational search algorithm", Inform. Sci., 179(13), 2232-2248. https://doi.org/10.1016/j.ins.2009.03.004
- Salajegheh, E. and Gholizadeh, S. (2005), "Optimum design of structures by an improved genetic algorithm using neural networks", Adv. Eng. Softw., 36(11), 757-767. https://doi.org/10.1016/j.advengsoft.2005.03.022
- Saribas, A. and Erbatur, F. (1996), "Optimization and sensitivity of retaining structures", J. Geotech. Eng., 122(8), 649-656. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:8(649)
- Sonmez, M. (2011), "Discrete optimum design of truss structures using artificial bee colony algorithm", Struct. Multidiscip. Optim., 43(1), 85-97. https://doi.org/10.1007/s00158-010-0551-5
- Technology, C.I.o.C. (2009), BEDEC PR/PCT ITEC materials database, Barcelona, Spain.
- Tizhoosh, H.R. (2005). "Opposition-based learning: A new scheme for machine intelligence", International Conference on Computational Intelligence for Modelling Control and Automation, CIMCA 2005, Vienna, Austria.
- Togan, V., Daloglu, A.T. and Karadeniz, H. (2011), "Optimization of trusses under uncertainties with harmony search", Struct. Eng. Mech., 37(5), 543-560. https://doi.org/10.12989/sem.2011.37.5.543
- Wang, W., Guo, S., Chang, N., Zhao, F. and Yang, W. (2010), "A modified ant colony algorithm for the stacking sequence optimisation of a rectangular laminate", Struct. Multidiscip. Optim., 41(5), 711-720. https://doi.org/10.1007/s00158-009-0447-4
- Yepes, V., Alcala, J., Perea, C. and González-Vidosa, F. (2008), "A parametric study of optimum earthretaining walls by simulated annealing", Eng. Struct., 30(3), 821-830. https://doi.org/10.1016/j.engstruct.2007.05.023
피인용 문헌
- Constructability optimal design of reinforced concrete retaining walls using a multi-objective genetic algorithm vol.47, pp.2, 2013, https://doi.org/10.12989/sem.2013.47.2.227
- Multi-objective optimisation of retaining walls using hybrid adaptive gravitational search algorithm vol.31, pp.3, 2014, https://doi.org/10.1080/10286608.2013.853746
- Backfill and subsoil interaction effects on seismic behavior of a cantilever wall vol.6, pp.2, 2014, https://doi.org/10.12989/gae.2014.6.2.117
- Stochastic Leader Gravitational Search Algorithm for Enhanced Adaptive Beamforming Technique vol.10, pp.11, 2015, https://doi.org/10.1371/journal.pone.0140526
- An Experience Oriented-Convergence Improved Gravitational Search Algorithm for Minimum Variance Distortionless Response Beamforming Optimum vol.11, pp.7, 2016, https://doi.org/10.1371/journal.pone.0156749
- Metamodel-based design optimization of structural one-way slabs based on deep learning neural networks to reduce environmental impact vol.155, 2018, https://doi.org/10.1016/j.engstruct.2017.11.005
- Optimal design of Reinforced Concrete Cantilever Retaining Walls considering the requirement of slope stability vol.21, pp.7, 2017, https://doi.org/10.1007/s12205-017-1627-1
- A New Hybrid Firefly Algorithm for Foundation Optimization vol.36, pp.3, 2013, https://doi.org/10.1007/s40009-013-0129-z
- Multi-objective optimization of foundation using global-local gravitational search algorithm vol.50, pp.3, 2014, https://doi.org/10.12989/sem.2014.50.3.257
- Null Steering of Adaptive Beamforming Using Linear Constraint Minimum Variance Assisted by Particle Swarm Optimization, Dynamic Mutated Artificial Immune System, and Gravitational Search Algorithm vol.2014, 2014, https://doi.org/10.1155/2014/724639
- A memory-based gravitational search algorithm for enhancing minimum variance distortionless response beamforming vol.47, 2016, https://doi.org/10.1016/j.asoc.2016.05.045
- Proposing optimum parameters of TMDs using GSA and PSO algorithms for drift reduction and uniformity vol.63, pp.2, 2013, https://doi.org/10.12989/sem.2017.63.2.147
- Yapay arı koloni algoritması kullanılarak betonarme istinat duvarlarının optimum maliyet tasarımını etkileyen parametrelerin incelenmesi vol.33, pp.1, 2013, https://doi.org/10.17341/gazimmfd.406796
- Optimal Design of Block Quay Walls vol.6, pp.None, 2020, https://doi.org/10.3389/fbuil.2020.00075
- Investigation on seismic behavior of combined retaining structure with different rock shapes vol.73, pp.5, 2020, https://doi.org/10.12989/sem.2020.73.5.599
- CO2 and Cost Optimization of Reinforced Concrete Cantilever Soldier Piles: A Parametric Study with Harmony Search Algorithm vol.12, pp.15, 2020, https://doi.org/10.3390/su12155906
- Adaptive-Hybrid Harmony Search Algorithm for Multi-Constrained Optimum Eco-Design of Reinforced Concrete Retaining Walls vol.13, pp.4, 2013, https://doi.org/10.3390/su13041639