DOI QR코드

DOI QR Code

Temperature effects on brittle fracture in cracked asphalt concretes

  • Ayatollahi, Majid-Reza (Fatigue and Fracture Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical Engineering, Iran University of Science and Technology) ;
  • Pirmohammad, Sadjad (Fatigue and Fracture Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical Engineering, Iran University of Science and Technology)
  • 투고 : 2012.02.26
  • 심사 : 2012.11.30
  • 발행 : 2013.01.10

초록

Cracking at low temperatures is one of the frequently observed modes of failure in asphalt concretes. In this investigation, fracture tests were performed on cracked asphalt concrete subjected to pure mode I and pure mode II loading at different subzero temperatures. An improved semi-circular bend (SCB) specimen containing a vertical crack was used to conduct the experiments. The SCB specimens produced from the gyratory compacted cylindrical samples were compressively loaded, and critical stress intensity factors, $K_{If}$ and $K_{IIf}$, were then calculated using peak loads obtained from the tests. The experimental results showed that with decreasing the temperature, mode I and mode II critical stress intensity factors increased first but below a certain temperature they both decreased. It was also found that at a fixed temperature, the mode II fracture resistance of the asphalt concrete was higher than its mode I fracture resistance.

키워드

참고문헌

  1. Ahmadinia, E., Zargar, M., Karim, M.R., Abdelaziz, M. and Shafig, P. (2011), "Using waste plastic bottles as additive for stone mastic asphalt", Mater. Des., 32, 4844-4849. https://doi.org/10.1016/j.matdes.2011.06.016
  2. Al-Hadidy, A.I. and Yi-qiu, T. (2009), "Mechanistic approach for polypropylene-modified flexible pavements", Mater. Des., 30, 1133-1140. https://doi.org/10.1016/j.matdes.2008.06.021
  3. Ameri, M., Mansourian, A., Khavas, M.H., Aliha, M.R.M. and Ayatollahi, M.R. (2011), "Cracked asphalt pavement under traffic loading - A 3D finite element analysis", Eng. Fract. Mech., 78, 1817-1826. https://doi.org/10.1016/j.engfracmech.2010.12.013
  4. Artamendi, I. and Al-Khalid, H. (2006), "A comparision between beam and semi-circular bending fracture tests for asphalt", Road Mater. Pavement Des., 6, 163-180.
  5. Atzori, B., Filippi, S., Lazzarin, P. and Berto, F. (2005), "Stress distributions in notched structural components under pure bending and combined traction and bending", Fatigue Fract. Eng. Mater. Struct., 28, 13-23. https://doi.org/10.1111/j.1460-2695.2004.00831.x
  6. Awaji, H. and Sato, S. (1978), "Combined mode fracture toughness measurement by the disc test", J. Eng. Mater. Tech., 100, 172-175.
  7. Ayatollahi, M.R. (2011), Investigation of mixed mode fracture in asphalt concretes due to the traffic loads, Research Report 88B5T2P28(RP), Transportation Research Institute, Iran Ministry of Roads and Transportation.
  8. Ayatollahi, M.R. and Aliha, M.R.M. (2006), "On determination of mode II fracture toughness using semicircular bend specimen", Int. J. Solids Struct., 43, 5217-5227. https://doi.org/10.1016/j.ijsolstr.2005.07.049
  9. Ayatollahi, M.R. and Aliha, M.R.M. (2007), "Wide range data for crack tip parameters in two disc-type specimens under mixed mode loading", Comput. Mater. Sci., 38, 660-670. https://doi.org/10.1016/j.commatsci.2006.04.008
  10. Ayatollahi, M.R. and Aliha, M.R.M. (2008), "On mixed-mode I/II crack growth in dental resin materials", Scr. Mater., 59, 258-261. https://doi.org/10.1016/j.scriptamat.2008.03.026
  11. Ayatollahi, M.R. and Aliha, M.R.M. (2009), "Mixed mode fracture in soda lime glass analyzed by using the generalized MTS criterion", Int. J. Solids Struct., 46, 311-321. https://doi.org/10.1016/j.ijsolstr.2008.08.035
  12. Ayatollahi, M.R., Aliha, M.R.M. and Hassani, M.M. (2006), "Mixed mode brittle fracture in PMMA-An experimental study using SCB specimens", Mater. Sci. Eng., A., 417, 346-348.
  13. Ayatollahi, M.R., Berto, F. and Lazzarin, P. (2011), "Mixed mode brittle fracture of sharp and blunt V-notches in polycrystalline graphite", Carbon, 49, 2465-2474. https://doi.org/10.1016/j.carbon.2011.02.015
  14. Ayatollahi, M.R. and Torabi, A.R. (2010), "Tensile fracture in notched polycrystalline graphite specimens", Carbon, 48, 2255-2265. https://doi.org/10.1016/j.carbon.2010.02.041
  15. Ayatollahi, M.R. and Torabi, A.R. (2011), "Failure assessment of notched polycrystalline graphite under tensile-shear loading", Mater. Sci. Eng., A., 528, 5685-5695. https://doi.org/10.1016/j.msea.2011.04.066
  16. Berto, F., Lazzarin, P. and Radaj, D. (2008), "Fictitious notch rounding concept applied to sharp V-notches: Evaluation of the micro structural support factor for different failure hypotheses. Part I: Basic stress equations", Eng. Fract. Mech., 75, 3060-3072. https://doi.org/10.1016/j.engfracmech.2007.12.011
  17. Berto, F., Lazzarin, P. and Radaj, D. (2012), "Fictitious notch rounding concept applied to V-notches with root holes subjected to in-plane shear loading", Eng. Fract. Mech., 79, 281-294. https://doi.org/10.1016/j.engfracmech.2011.11.007
  18. Casey, D., McNally, C., Gibney, A. and Gilchrist, M.D. (2008), "Development of a recycled polymer modified binder for use in stone mastic asphalt", J. Resour. Conserv. Recy. , 52, 1167-1174. https://doi.org/10.1016/j.resconrec.2008.06.002
  19. Chen, H., Xu, Q., Chen, S. and Zhang, Z. (2009), "Evaluation and design of fiber-reinforced asphalt mixtures", Mater Des., 30, 2595-2603. https://doi.org/10.1016/j.matdes.2008.09.030
  20. Dongre, R., Sharma, M.C. and Anderson, D.A. (1989), "Development of fracture criterion for asphalt mixes at low temperatures", J. Transp. Res. Rec., 1228, 94-105.
  21. Elices, M., Guinea, G.V., Gomez, F.J. and Planas, J. (2002), "The cohesive zone model: advantages, limitations and challenges", Eng. Fract. Mech., 69, 137-163. https://doi.org/10.1016/S0013-7944(01)00083-2
  22. Elices, M., Rocco, C. and Rosello, C. (2008), "Cohesive crack modeling of a simple concrete: Experimental and numerical results", Eng. Fract. Mech., 76, 1398-1410.
  23. Erdogan, F. and Sih, G.C. (1963), "On the crack extension in plates under plane loading and transverse shear", J. Basic Eng., 85, 519-525. https://doi.org/10.1115/1.3656897
  24. Gomez, F.J., Elices, M., Berto, F. and Lazzarin, P. (2007), "Local strain energy to assess the static failure of U-notches in plates under mixed mode loading", Int. J. Fract., 145, 29-45. https://doi.org/10.1007/s10704-007-9104-3
  25. Gomez, F.J., Elices, M., Berto, F. and Lazzarin, P.A. (2008a), "Fracture of U-notched specimens under mixed mode: Experimental results and numerical predictions", Eng. Fract. Mech., 76, 236-249.
  26. Gomez, F.J., Elices, M., Berto, F. and Lazzarin, P.A. (2008b), "A generalized notch stress intensity factor for U-notched components loaded under mixed mode", Eng. Fract. Mech., 75, 4819-4833. https://doi.org/10.1016/j.engfracmech.2008.07.001
  27. Gomez, F.J., Elices, M., Berto, F. and Lazzarin, P.A. (2009), "Fracture of V-notched specimens under mixed mode (I+II) loading in brittle materials", Int. J. Fract., 159, 121-135. https://doi.org/10.1007/s10704-009-9387-7
  28. Hillerborg, A., Modeer, M. and Petersson, P.E. (1976), "Analysis of crack formation and crack growth by means of fracture mechanics and finite elements", J. Cement Concr. Res., 1, 773-782.
  29. Hussain, M.A., Pu, S.L. and Underwood J. (1974) Strain energy release rate for a crack under combined mode I and mode II, Fracture analysis ASTM STP 560 American Society for Testing and Materials, Philadelphia, 2-28
  30. Hussein, H.M.E. and Halim, A.O.A. (1993), "Differential thermal expansion-contraction a mechanical approach to adhesion in asphalt concrete", Can. J. Civ. Eng., 20, 366-373. https://doi.org/10.1139/l93-051
  31. Kim, K.W. and Hussein, M. (1997), "Variation of fracture toughness of asphalt concrete under low temperatures", J. Constr. Build. Mater., 11, 403-411. https://doi.org/10.1016/S0950-0618(97)00030-5
  32. Kim, K.W. and Hussein, M.E. (1995), "Effect of differential thermal contraction on fracture toughness of asphalt materials at low temperatures", J. Assoc. Asphalt Paving Technol., 64, 479-499.
  33. Kim, K.W., Kweon, S.J., Doh, Y.S. and Park, T.S. (2003), "Fracture toughness of polymer-modified asphalt concrete at low temperatures", Can. J. Civ. Eng., 30, 406-413. https://doi.org/10.1139/l02-101
  34. Lazzarin, P. and Berto, F. (2005), "From Neuber's elementary volume to Kitagawa and Atzori's diagrams: an interpretation based on local energy", Int J. Fract., 135, 33-38. https://doi.org/10.1007/s10704-005-4393-x
  35. Lazzarin, P., Livieri, P., Berto, F. and Zappalorto, M. (2006), "Local strain energy density and fatigue strength of welded joints under uniaxial and multiaxial loading", Eng. Fract. Mech., 75, 1875-1889.
  36. Li, X., Marasteanu, M. and Assoc, J. (2004), "Evaluation of the low temperature fracture resistance of asphalt mixtures using the semi circular bend test", J. Asphalt Paving Technol., 73, 401-426.
  37. Lytton, R.L. (1989), "Use of geotextile for reinforcement and strain relief in asphalt concrete", J. Geotextile Geomembranes, 8, 217-237. https://doi.org/10.1016/0266-1144(89)90004-6
  38. Marasteanu, M.O., Dai, S., Labuz, J.F. and Li, X. (2002), "Determining the low-temperature fracture toughness of asphalt mixtures", J. Transp. Res. Rec., 1789, 191-199. https://doi.org/10.3141/1789-21
  39. Molenaar, J.M.M. and Molenaar, A.A.A. (2000 of Conference), "Fracture toughness of asphalt in the semicircular bend test", 2nd Eurasphalt and Eurobitume Congress, Barcelona, Spain.
  40. Mukhtar, M.T. and Dempsey, B.J. (1996), Interlayer stress absorbing composite for mitigating reflective cracking in asphalt concrete overlays, UILU-ENG-96-2006, University of Illinois at Urbana-Champaign, Urbana, IL.
  41. Sih, G.C. (1974), "Strain-energy-density factor applied to mixed mode crack problems", Int. J. Fract., 10, 305-321. https://doi.org/10.1007/BF00035493
  42. Smith, D.J., Ayatollahi, M.R. and Pavier, M.J. (2001), "The role of T-stress in brittle fracture for linear elastic materials under mixed mode loading", Fatigue Fract. Eng. Mater. Struct., 24, 137-150. https://doi.org/10.1046/j.1460-2695.2001.00377.x
  43. Tekalur, S.A., Shukla, A., Sadd, M. and Lee, K.W. (2008), "Mechanical characterization of a bituminous mix under quasi-static and high-strain rate loading", Constr. Build. Mater., 23, 1795-1802.
  44. Timm, D., Birgisson, B. and Newcomb, D. (1998), "Development of mechanistic-empirical pavement design in Minnesota", J. Transp. Res. Rec., 1629, 181-188. https://doi.org/10.3141/1629-20
  45. Wagoner, M.P., Buttlar, W.G., Paulino, G.H. and Blankenship, P. (2005), "Investigation of the fracture resistance of hot-mix asphalt concrete using a disk-shaped compact tension test", J. Transp. Res. Rec., 1929, 183-192. https://doi.org/10.3141/1929-22

피인용 문헌

  1. Effect of temperature and air void on mixed mode fracture toughness of modified asphalt mixtures vol.95, 2015, https://doi.org/10.1016/j.conbuildmat.2015.07.165
  2. Mixed mode fracture assessment of U-notched graphite Brazilian disk specimens by means of the local energy vol.50, pp.6, 2014, https://doi.org/10.12989/sem.2014.50.6.723
  3. Study of characteristic specification on mixed mode fracture toughness of asphalt mixtures vol.54, 2014, https://doi.org/10.1016/j.conbuildmat.2013.12.097
  4. Characterizing mixed mode I/III fracture toughness of asphalt concrete using asymmetric disc bend (ADB) specimen vol.120, 2016, https://doi.org/10.1016/j.conbuildmat.2016.05.137
  5. Numerical analysis of peridynamic and classical models in transient heat transfer, employing Galerkin approach 2017, https://doi.org/10.1002/htj.21317
  6. Effect of recycled glass powder on asphalt concrete modification vol.59, pp.2, 2016, https://doi.org/10.12989/sem.2016.59.2.373
  7. Fracture resistance of HMA mixtures under mixed mode I/III loading at different subzero temperatures vol.120, 2017, https://doi.org/10.1016/j.ijsolstr.2017.05.010
  8. Effects of asphalt concrete characteristics on cohesive zone model parameters of hot mix asphalt mixtures vol.43, pp.3, 2016, https://doi.org/10.1139/cjce-2014-0504
  9. A novel test specimen for investigating the mixed mode I+III fracture toughness of hot mix asphalt composites – Experimental and theoretical study vol.90, 2016, https://doi.org/10.1016/j.ijsolstr.2016.03.018
  10. Fracture resistance of asphalt concrete under different loading modes and temperature conditions vol.53, 2014, https://doi.org/10.1016/j.conbuildmat.2013.11.096
  11. Quasi-Brittle Fracture Modeling of Preflawed Bitumen Using a Diffuse Interface Model vol.2016, 2016, https://doi.org/10.1155/2016/8751646
  12. Mixed Mode I/II Fracture Strength of Modified HMA Concretes Subjected to Different Temperature Conditions vol.47, pp.5, 2013, https://doi.org/10.1520/jte20180848
  13. Fracture Resistance of HMA Mixtures Modified with Nanoclay and Nano-Al2O3 vol.47, pp.5, 2013, https://doi.org/10.1520/jte20180919
  14. Investigating the Effect of Aggregate Characteristics on the Macroscopic and Microscopic Fracture Mechanisms of Asphalt Concrete at Low-Temperature vol.12, pp.17, 2019, https://doi.org/10.3390/ma12172675
  15. Laboratory investigations on fracture toughness of asphalt concretes reinforced with carbon and kenaf fibers vol.226, pp.None, 2020, https://doi.org/10.1016/j.engfracmech.2020.106875
  16. The effect of basalt fibres on fracture toughness of asphalt mixture vol.43, pp.7, 2020, https://doi.org/10.1111/ffe.13207
  17. Fracture strength of warm mix asphalt concretes modified with crumb rubber subjected to variable temperatures vol.21, pp.suppl1, 2020, https://doi.org/10.1080/14680629.2020.1724819
  18. Experimental investigation of fracture properties of asphalt mixtures modified with Nano Fe2O3 and carbon nanotubes vol.21, pp.8, 2013, https://doi.org/10.1080/14680629.2019.1608289