References
- Blom, A.W., Setoodeh, S., Hol, J.M.A.M. and Gürdal, Z. (2008), "Design of variable-stiffness conical shells for maximum fundamental eigenfrequency", Comput. Struct., 86(9), 870-878. https://doi.org/10.1016/j.compstruc.2007.04.020
- Civalek, O. (2007), "Numerical analysis of free vibrations of laminated composite conical and cylindrical shells: Discrete singular convolution (DSC) approach", J. Comput. App. Math., 205(1), 251-271. https://doi.org/10.1016/j.cam.2006.05.001
- Dey, S. and Karmakar, A. (2012), "Natural frequencies of delaminated composite rotating conical shells-A finite element approach", Finite Elem. Anal. Des., 56, 41-51. https://doi.org/10.1016/j.finel.2012.02.007
- Fares, M.E., Yousiff, Y.G. and Alamir, A.E. (2004), "Design and control optimization of composite laminated truncated conical shells for minimum dynamic response including transverse shear deformation", Compos. Struct., 64(2), 139-150. https://doi.org/10.1016/S0263-8223(03)00222-8
- Goldfeld, Y., Arbocz, J. and Rothwell, A. (2005), "Design and optimization of laminated conical shells for buckling", Thin-Walled Struct., 43(1), 107-133. https://doi.org/10.1016/j.tws.2004.07.003
- Hu, H.T. and Ou, S.C. (2001), "Maximization of the fundamental frequencies of laminated truncated conical shells with respect to fiber orientations", Compos. Struct., 52(3-4), 265-275. https://doi.org/10.1016/S0263-8223(01)00019-8
- Kabir, M.Z. and Shirazi, A.R. (2008), "Optimum design of filament-wound laminated conical shells for buckling using the penalty function" Iranian Aerospace Society, 5(3), 115-121. https://doi.org/10.1007/BF03245824
- Patel, B.P., Singh, S. and Nath, Y. (2008), "Postbuckling characteristics of angle-ply laminated truncated circular conical shells", Commun. Nonlinear Sci. Num. Simul., 13(7), 1411-1430. https://doi.org/10.1016/j.cnsns.2007.01.001
- Patel, B.P., Shukla, K.K. and Nath, Y. (2005), "Thermal postbuckling analysis of laminated cross-ply truncated circular conical shells", Compos. Struct., 71(1), 101-114. https://doi.org/10.1016/j.compstruct.2004.09.030
- Shadmehri, F., Hoa, S.V. and Hojjati, M. (2012), "Buckling of conical composite shells", Compos. Struct., 94(2), 787-792. https://doi.org/10.1016/j.compstruct.2011.09.016
- Singh, B.N. and Babu, J.B. (2009), "Thermal buckling of laminated composite conical shell panel with and without piezoelectric layer with random material properties", Int'l J. Crashworthiness, 14(1), 73-81. https://doi.org/10.1080/13588260802517352
- Sivadas, K.R. and Ganesan, N. (1991), "Vibration analysis of laminated conical shells with variable thickness", J. Sound Vib., 148(3), 477-491. https://doi.org/10.1016/0022-460X(91)90479-4
- Sofiyev, A.H. and Kuruoglu, N. (2011), "The non-linear buckling analysis of cross-ply laminated orthotropic truncated conical shells", Compos. Struct., 93(11), 3006-3012. https://doi.org/10.1016/j.compstruct.2011.04.035
- Sofiyev, A.H. and Karaca, Z. (2009), "The vibration and buckling of laminated non-homogeneous orthotropic conical shells subjected to external pressure", Eur. J. Mech.- A/Solids, 28(2), 317-328. https://doi.org/10.1016/j.euromechsol.2008.06.002
- Tong, L., (1993), "Free vibration of composite laminated conical shells", Int'l J. Mech. Sci., 35(1), 47-61. https://doi.org/10.1016/0020-7403(93)90064-2
- Tripathi, V., Singh, B.N. and Shukla, K.K. (2007), "Free vibration of laminated composite conical shells with random material properties", Compos. Struct., 81(1), 96-104. https://doi.org/10.1016/j.compstruct.2006.08.002
Cited by
- On the fabrication of carbon fabric reinforced epoxy composite shell without joints and wrinkling vol.15, pp.3, 2013, https://doi.org/10.12989/scs.2013.15.3.267
- Multi-objective optimum design of TBR tire structure for enhancing the durability using genetic algorithm vol.31, pp.12, 2017, https://doi.org/10.1007/s12206-017-1140-y
- An investigation into the mechanics of fiber reinforced composite disk springs vol.18, pp.3, 2015, https://doi.org/10.12989/scs.2015.18.3.775
- Experimental and numerical investigation of composite conical shells' stability subjected to dynamic loading vol.49, pp.5, 2014, https://doi.org/10.12989/sem.2014.49.5.555
- Meshless local collocation method for natural frequencies and mode shapes of laminated composite shells vol.51, pp.6, 2014, https://doi.org/10.12989/sem.2014.51.6.893
- Transient analysis of cross-ply laminated shells using FSDT: Alternative formulation vol.18, pp.4, 2015, https://doi.org/10.12989/scs.2015.18.4.889
- Failure estimation of the composite laminates using machine learning techniques vol.25, pp.6, 2013, https://doi.org/10.12989/scs.2017.25.6.663
- Nonlinear buckling and post-buckling of functionally graded CNTs reinforced composite truncated conical shells subjected to axial load vol.31, pp.3, 2019, https://doi.org/10.12989/scs.2019.31.3.243
- The influence of graphene platelet with different dispersions on the vibrational behavior of nanocomposite truncated conical shells vol.38, pp.1, 2021, https://doi.org/10.12989/scs.2021.38.1.047