참고문헌
- Fonseca, E.T. and Vellasco, P.G.S. (2003), "A path load parametric analysis using neural networks", J. Construct. Steel Res., 59, 251-267. https://doi.org/10.1016/S0143-974X(02)00024-X
- Funahashi, K. (1989), "On the approximate realization of continuous mappings by neural networks", Neural Networks, 2(3), 183-192. https://doi.org/10.1016/0893-6080(89)90003-8
- Hagan, M.T., Demuth, H.B. and Beale, M.H. (1996), Neural Network Design, PWS Publishing Company, Boston, MA, USA.
- Hakim, S.J.S., Noorzaei, J., Jaafar, M.S., Jameel, M., Mohammadhassani, M. (2011), "Application of artificial neural networks to predict compressive strength of high strength concrete", Int'l J. Phys. Sci. (IJPS), 6(5), 975-981.
- Hornik, K., Stinchcombe, M. and White, H. (1989), "Multilayer feed forward networks are universal approximator", Neural Networks., 2(5), 359-366. https://doi.org/10.1016/0893-6080(89)90020-8
- Inglessis, P., Medina, S., Lopez, A., Febres, R. and Lopez, J.F. (2002), "Modelling of local buckling in tubular steel frames by using plastic hinges with damage", Steel Composite Struct., An Int'l J., 2(1),57-65.
- Kim, H., Cui, J., Seo, H.Y. and Lee, Y.H. (2009), "Iterative neural network strategy for static model identification of an FRP deck", Steel and Composite Struct., An Int'l J., 9(5), 445-455. https://doi.org/10.12989/scs.2009.9.5.445
- Lam, H.F. and Ng, C.T. (2008), "The selection of pattern features for structural damage detection using an extended Bayesian ANN algorithm", J. Eng. Struct., 30(10), 2762-2770. https://doi.org/10.1016/j.engstruct.2008.03.012
- Lee, J.W., Kim, J.D., Yun, C.B., Yi, J.H. and Shim, M. (2002), "Health-monitoring method for bridges under ordinary traffic loadings", J. Sound Vib., 257(2), 247-264. https://doi.org/10.1006/jsvi.2002.5056
- Leu, S.S. and Loch, S. (2004), "Neural-network-based regression model of ground surface settlement induced by deep excavation", 13(3), 279-289. https://doi.org/10.1016/S0926-5805(03)00018-9
- Lu, Y. and Tu, Z. (2004), "A two-level neural network approach for dynamic FE model updating including damping", J. Sound Vib., 275(3-5), 931-952. https://doi.org/10.1016/S0022-460X(03)00796-X
- Mehrjoo, M., Khaji, N., Moharrami, H. and Bahreininejad, A. (2008), "Damage detection of truss bridge joints using artificial neural networks," J. Expert Sys. Appl., 35(3), 1122-1131. https://doi.org/10.1016/j.eswa.2007.08.008
- Mohammadhassani, M., Nezam Abadi-Pour, H., Zamin Jumaat, M., Jameel, M. and Arumugam, A.M.S. (2013a), "Application of artificial neural network (ANN) and linear regressions (LR) in predicting the deflection of concrete deep beams", Computer and Concrete, 11(3). [In Print]
- Mohammadhassani, M., Nezamabadi-Pour, H., Jumaat, M., Jameel, M., Hakim, S.J.S. and Zargar, M. (2013b), "Application of the ANFIS model in deflection prediction of concrete deep beam", Struct. Eng. Mech., 45(3), 323-336. https://doi.org/10.12989/sem.2013.45.3.323
- Nam, K.K., Haeng, L.S., Sup, J.K. (2009), "Prediction on the fatigue life of butt-welded specimens using artificial neural network", Steel Composite Struct., An Int'l J., 9(6), 557-568. https://doi.org/10.12989/scs.2009.9.6.557
- Ni, Y.Q., Zhou, X.T. and Ko, J.M. (2006), "Experimental investigation of seismic damage identification using PCA-compressed frequency response functions and neural networks", J. Sound Vib., 290(1-2), 242-263. https://doi.org/10.1016/j.jsv.2005.03.016
- Noorzaei, J., Hakim, S.J.S. and Jaafar, M.S. (2008), "An approach to predict ultimate bearing capacity of surface footings using artificial neural network", Indian Geotech. J., 38(4), 515-528.
- Noorzaei, J., Hakim, S.J.S., Jaafar, M.S., Abang, A.A.A. and Thanoon, W.A.M. (2007), "An optimal architecture of artificial neural network for predicting of compressive strength of concrete", Indian Concrete J., 81(8), 17-24.
- Park, J.H., Kim, J.T., Hong, D.S., Ho, D.D. and Yi, J.H. (2009), "Sequential damage detection approaches for beams using time-modal features and artificial neural networks", J. Sound Vib., 323, 451-474. https://doi.org/10.1016/j.jsv.2008.12.023
- Ramadas, C., Balasubramaniam, K., Joshi, M. and Krishnamurthy, C.V. (2008), "Detection of transverse cracks in a composite beam using combined features of lamb wave and vibration techniques in ANN environment", Int'l J. Smart Sens. Intellig. Sys., 1(10), 970-984. https://doi.org/10.21307/ijssis-2017-331
- Rosales, M.B., Filipich, C.P. and Buezas, F.S. (2009), "Crack detection in beam-like structures", Eng. Struct., 31(10), 2257-2264. https://doi.org/10.1016/j.engstruct.2009.04.007
- Rytter, A. (1993), "Vibration based inspection of civil engineering structures", Ph.D. Thesis, Department of Building Technology and Structural Engineering, Aalborg University, Denmark.
- Stull, C.J. and Earls, C.J. (2009), "A rapid assessment methodology for bridges damage by truck strikes", Steel Composite Struct., An Int'l J., 9(3), 223-237. https://doi.org/10.12989/scs.2009.9.3.223
- Suh, M.W., Shim, M.B. and Kim, M.Y. (2000), "Crack identification using hybrid neuro-genetic technique", J. Sound Vib., 234(4), 617-635.
- Wu, Z.S., Xu, B. and Yokoyama, K (2002), "Decentralized parametric damage based on neural networks", J. Computer-Aided Civil Infrastruct. Eng., 17(3), 175-184. https://doi.org/10.1111/1467-8667.00265
- Xu, B., Wu, Z.S. and Yokoyama, K. (2002), "A localized identification method with neural networks and its application to structural health monitoring", J. Struct. Eng., JSCE, 48A, 419-427.
- Yau, J.D. (2005), "Damage detection of a cracked column via a neural network approach", J. Adv. Steel Struct., 2, 1749-1754.
- Zapico, J.L., Gonzalez, M.P. Worden, K. (2003), "Damage assessment using neural networks", J. Mech. Sys. Signal Process., 17(1), 119-125. https://doi.org/10.1006/mssp.2002.1547
- Matlab 7.11 (R2010b), The MathWorks Inc., MA, USA. http://www.tnodiana.com
피인용 문헌
- Modal parameters based structural damage detection using artificial neural networks - a review vol.14, pp.2, 2014, https://doi.org/10.12989/sss.2014.14.2.159
- Fault diagnosis on beam-like structures from modal parameters using artificial neural networks vol.76, 2015, https://doi.org/10.1016/j.measurement.2015.08.021
- An intelligent structural damage detection approach based on self-powered wireless sensor data vol.62, 2016, https://doi.org/10.1016/j.autcon.2015.10.001
- Damage growth detection in steel plates: Numerical and experimental studies vol.128, 2016, https://doi.org/10.1016/j.engstruct.2016.09.026
- Detection of damage in truss structures using Simplified Dolphin Echolocation algorithm based on modal data vol.18, pp.5, 2016, https://doi.org/10.12989/sss.2016.18.5.983
- Prediction of shear capacity of channel shear connectors using the ANFIS model vol.17, pp.5, 2014, https://doi.org/10.12989/scs.2014.17.5.623
- Prediction of the flexural overstrength factor for steel beams using artificial neural network vol.17, pp.3, 2014, https://doi.org/10.12989/scs.2014.17.3.215
- Railway bridge structural health monitoring and fault detection: State-of-the-art methods and future challenges 2017, https://doi.org/10.1177/1475921717721137
- Data Fusion Technique for Bridge Safety Assessment vol.47, pp.3, 2018, https://doi.org/10.1520/JTE20170760
- Crack identification with parametric optimization of entropy & wavelet transformation vol.4, pp.1, 2013, https://doi.org/10.12989/smm.2017.4.1.033
- Constitutive model for ratcheting behavior of Z2CND18.12N austenitic stainless steel under non-symmetric cyclic stress based on BP neural network vol.28, pp.5, 2018, https://doi.org/10.12989/scs.2018.28.5.517
- Data-driven method of damage detection using sparse sensors installation by SEREPa vol.9, pp.4, 2013, https://doi.org/10.1007/s13349-019-00345-8
- Backpropagation Neural Network-Based Machine Learning Model for Prediction of Soil Friction Angle vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/8845768
- Field-testing and numerical simulation of vantage steel bridge vol.10, pp.3, 2013, https://doi.org/10.1007/s13349-020-00396-2
- Structural damage identification using an iterative two-stage method combining a modal energy based index with the BAS algorithm vol.36, pp.1, 2020, https://doi.org/10.12989/scs.2020.36.1.031
- Structural Damage Detection Based on Real-Time Vibration Signal and Convolutional Neural Network vol.10, pp.14, 2013, https://doi.org/10.3390/app10144720
- System Identification of a Soil Tunnel Based on a Hybrid Artificial Neural Network-Numerical Model Approach vol.44, pp.3, 2013, https://doi.org/10.1007/s40996-020-00405-w
- Residual Strength Prediction of Aluminum Panels with Multiple Site Damage Using Artificial Neural Networks vol.13, pp.22, 2013, https://doi.org/10.3390/ma13225216
- A Novel Assisted Artificial Neural Network Modeling Approach for Improved Accuracy Using Small Datasets: Application in Residual Strength Evaluation of Panels with Multiple Site Damage Cracks vol.10, pp.22, 2013, https://doi.org/10.3390/app10228255
- Damage identification in steel girder bridges using modal strain energy-based damage index method and artificial neural network vol.119, pp.None, 2013, https://doi.org/10.1016/j.engfailanal.2020.105010
- Localizing and quantifying structural damage by means of a beetle swarm optimization algorithm vol.24, pp.2, 2013, https://doi.org/10.1177/1369433220956829
- Predicting GPR Signals from Concrete Structures Using Artificial Intelligence-Based Method vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/6610805
- Review on the new development of vibration-based damage identification for civil engineering structures: 2010–2019 vol.491, pp.None, 2013, https://doi.org/10.1016/j.jsv.2020.115741
- Damage detection in structures using Particle Swarm Optimization combined with Artificial Neural Network vol.28, pp.1, 2021, https://doi.org/10.12989/sss.2021.28.1.001
- Review on Vibration-Based Structural Health Monitoring Techniques and Technical Codes vol.13, pp.11, 2021, https://doi.org/10.3390/sym13111998
- Structural Health Monitoring in Composite Structures: A Comprehensive Review vol.22, pp.1, 2013, https://doi.org/10.3390/s22010153