DOI QR코드

DOI QR Code

Application of a new extended layerwise approach to thermal buckling load optimization of laminated composite plates

  • Topal, Umut (Karadeniz Technical University, Faculty of Technology, Department of Civil Engineering)
  • 투고 : 2012.06.19
  • 심사 : 2013.01.16
  • 발행 : 2013.03.25

초록

This paper deals with the applicability of a new extended layerwise optimization method for thermal buckling load optimization of laminated composite plates. The design objective is the maximization of the critical thermal buckling of the laminated plates. The fibre orientations in the layers are considered as design variables. The first order shear deformation theory (FSDT) is used for the finite element solution of the laminates. Finally, the numerical analysis is carried out to show the applicability of extended layerwise optimization algorithm of laminated plates for different parameters such as plate aspect ratios and boundary conditions.

키워드

참고문헌

  1. Akhras, G. and Li, W.C. (2010), "Three-dimensional thermal buckling analysis of piezoelectric antisymmetric angle-ply laminates using finite layer method", Compos. Struct., 92(1), 31-38. https://doi.org/10.1016/j.compstruct.2009.06.010
  2. Autio, M. (2001), "Optimization of coupled thermal-structural problems of laminated plates with lamination parameters", Struct. and Multidiscip. Optim., 21, 40-51. https://doi.org/10.1007/s001580050166
  3. Chen, B., Gu, Y., Zhao, G., Lin, W., Chang, T.Y.P. and Kuang, J.S. (2003), "Design optimızation for structural thermal buckling", J. Therm. Stresses, 26, 479-494. https://doi.org/10.1080/713855939
  4. Fares, M.E., Youssif, Y.G. and Hafiz, M.A. (2005), "Multiobjective design and control optimization for minimum thermal postbuckling dynamic response and maximum buckling temperature of composite laminates", Struct. and Multidiscip. Optim., 30(2), 89-100. https://doi.org/10.1007/s00158-004-0490-0
  5. Fares, M.E., Youssif, Y.G. and Hafiz, M.A. (2004), "Structural and control optimization for maximum thermal buckling and minimum dynamic response of composite laminated plates", Int. J. Solids Struct., 41, 1005-1019. https://doi.org/10.1016/j.ijsolstr.2003.09.047
  6. Ghomsei, M.M.M. and Mahmoudi, A. (2010), "Thermal buckling analysis of cross-ply laminated rectangular plates under nonuniform temperature distribution: A differential quadrature approach", J. Mech. Sci. Tech., 24, 2519-2527. https://doi.org/10.1007/s12206-010-0918-y
  7. Huang, N.N. and Tauchert, T.R. (1992). "Thermal buckling of clamped symmetric laminated plates", Thin-Walled Struct., 13(4), 259-273. https://doi.org/10.1016/0263-8231(92)90024-Q
  8. Kabir, H.R.H., Askar, H. and Chaudhuri, R.A. (2003), "Thermal buckling response of shear flexible laminated anisotropic plates using a three-node isoparametric element", Compos. Struct., 59(2), 173-187. https://doi.org/10.1016/S0263-8223(02)00237-4
  9. Lal, A., Singh, B.N. and Kumar, R. (2009), "Effects of random system properties on the thermal buckling analysis of laminated composite plates", Comput. Struct., 87(17-18), 1119-1128. https://doi.org/10.1016/j.compstruc.2009.06.004
  10. Lee, Y.S., Lee, Y.W., Yang, M.S. and Park, B.S. (1999), "Optimal design of thick laminated composite plates for maximum thermal buckling load", J. Therm. Stress, 22(3), 259-273.
  11. Malekzadeh, P., Vosoughi, A.R., Sadeghpour, M. and Vosoughi, H.R. (2012), "Thermal buckling optimization of temperature‐dependent laminated composite skew plates", J. Aerospace Eng., In Press.
  12. Mozafari, H., Alias, A. and Kamali F. (2010), "Optimum design of composite plates under thermal buckling loads using imperialist competitive algorithm", Int. J. Comput. Sci. Eng. Tech., 1, 54-58.
  13. Rasid, Z.A., Ayob, A., Zahari, R. Mustapha, F., Majid, D.L. and Varatharajoo, R. (2011), "Thermal buckling and post-buckling improvements of laminated composite plates using finite element method", Key Eng. Mat., 471-472, 536-541. https://doi.org/10.4028/www.scientific.net/KEM.471-472.536
  14. Shiau, L.C., Kuo, S.Y. and Chen C.Y. (2010), "Thermal buckling behavior of composite laminated plates", Compos. Struct., 92(2), 508-514. https://doi.org/10.1016/j.compstruct.2009.08.035
  15. Singha, M.K., Ramachandra, L.S. and Bandyopadhyay, J.N. (2000), "Optimum design of laminated composite plates for maximum thermal buckling loads", J. Comp. Mat., 34(23), 1982-1997. https://doi.org/10.1177/002199800772661930
  16. Spallino, R. and Thierauf G. (2000), "Thermal buckling optimization of composite laminates by evolution strategies", Comput. and Struct., 78(5), 691-697. https://doi.org/10.1016/S0045-7949(00)00050-X
  17. Topal, U. (2012). "Extended layerwise optimization approach for laminated plates in frequency domain", Steel Comp. Struct., 12, 541-548. https://doi.org/10.12989/scs.2012.12.6.541
  18. Topal, U. (2012), "Thermal buckling load optimization of laminated plates with different intermediate line supports", Steel Comp. Struct., 13(3), 207-223 https://doi.org/10.12989/scs.2012.13.3.207
  19. Topal, U. and Uzman, U. (2010), "Effect of rectangular/circular cutouts on thermal buckling load optimization of angle-ply laminated thin plates", Sci. Eng. Comp. Mat., 17, 93-110.
  20. Topal, U. and Uzman, U. (2008), "Thermal buckling load optimization of laminated composite plates", Thin-Walled Struct., 46(6), 667-675. https://doi.org/10.1016/j.tws.2007.11.005
  21. Vosoughi, A.R., Malekzadeh, P., Banan, Mo. R. and Banan, Ma. R. (2011), "Thermal postbuckling of laminated composite skew plates with temperature-dependent properties", Thin-Walled Struct., 49(7), 913-922. https://doi.org/10.1016/j.tws.2011.02.017

피인용 문헌

  1. An approach for the Pasternak elastic foundation parameters estimation of beams using simulated frequencies 2017, https://doi.org/10.1080/17415977.2017.1377707
  2. Buckling and dynamic characteristics of a laminated cylindrical panel under non-uniform thermal load vol.22, pp.6, 2013, https://doi.org/10.12989/scs.2016.22.6.1359
  3. Hygrothermal analysis of laminated composites using C0 FE model based on higher order zigzag theory vol.23, pp.1, 2013, https://doi.org/10.12989/scs.2017.23.1.041
  4. Ultimate strength estimation of composite plates under combined in-plane and lateral pressure loads using two different numerical methods vol.29, pp.6, 2018, https://doi.org/10.12989/scs.2018.29.6.785
  5. Combined effects of end-shortening strain, lateral pressure load and initial imperfection on ultimate strength of laminates: nonlinear plate theory vol.33, pp.2, 2013, https://doi.org/10.12989/scs.2019.33.2.245