References
- Azrar, L., Benamar, R. and White, R.G. (1999), "A semi-analytical approach to the non-linear dynamic response problem of S-S and C-C beams at large vibration amplitudes part I: General theory and application to the single mode approach to free and forced vibration analysis", J. Sound Vib., 224(2), 183-207. https://doi.org/10.1006/jsvi.1998.1893
- Bayat, M., Pakar, I. and Shahidi, M. (2011), "Analysis of nonlinear vibration of coupled systems with cubic nonlinearity", Mechanika, 17(6), 620-629.
- Bayat, M., Barari, A. and Shahidi, M. (2011), "Dynamic response of axially loaded Euler-Bernoulli beams", Mechanika, 17(2), 172-177.
- Bayat, M., Bayat, M., and Bayat, M. (2011) "An analytical approach on a mass grounded by linear and nonlinear springs in series", Int. J. Phy. Sci., 6(2), 229-236.
- Bayat, M., Pakar, I., and M, Bayat. (2011a) "Analytical study on the vibration frequencies of tapered beams", Latin American J. Solids Struct., 8(2), 149-162. https://doi.org/10.1590/S1679-78252011000200003
- Bayat, M. and Pakar, I. (2011b), "Nonlinear free vibration analysis of tapered beams by Hamiltonian Approach", J. Vibroengineering., 13(4), 654-661.
- Bayat, M. and Pakar, I. (2011c), "Application of He's energy balance method for nonlinear vibration of thin circular sector cylinder", Int. J. Phy. Sci., 6(23), 5564-5570.
- Pakar, I. and Bayat, M. (2011d) "Analytical solution for strongly nonlinear oscillation systems using energy balance method", Int. J. Phy. Sci., 6(22), 5166- 5170.
- Bayat, M. and Pakar, I. (2012a), "Analytical study on the non-linear vibration of Euler-Bernoulli beams", J. of Vibroengineering, 14(1), 216-224.
- Pakar, I., Bayat, M. and Bayat, M. (2012b), "On the approximate analytical solution for parametrically excited nonlinear oscillators", J. Vibroengineering, 14(1), 423-429.
- Bayat, M. and Pakar, I. (2012c), "On the approximate analytical solution to non-linear oscillation systems", Shock and Vibration, DOI: 10.3233/SAV-2012-0726.
- Bayat, M., Shahidi, M., Barari, A. and Domairry, G. (2010), "The approximate analysis of nonlinear behavior of structure under harmonic loading", Int. J. Phy. Sci., 5(7), 1074-1080.
- Bayat, M., Shahidi, M., Barari, A. and Domairry, G. (2011) "Analytical evaluation of the nonlinear vibration of coupled oscillator systems", Zeitschrift fur Naturforschung Section A-A Journal of Physical Sciences, 66(1-2), 67-74.
- Bayat, M., Shahidi, M. and Bayat, M. (2011), "Application of iteration perturbation method for nonlinear oscillators with discontinuities", Int. J. Phy. Sci., 6(15), 3608-3612.
- Bayat, M., Pakar, I. and Domaiirry, G. (2012), "Recent developments of some asymptotic methods and their applications for nonlinear vibration equations in engineering problems: A review", Latin American J. Solids and Struct., 9(2), 145-234.
- Biondi, B. and Caddemi, S. (2005), "Closed form solutions of Euler-Bernoulli beams with singularities", Inter. J. Solids and Struct., 42(9-10), 3027-3044. https://doi.org/10.1016/j.ijsolstr.2004.09.048
- Ganji, D.D., Rafei, M., Sadighi, A. and Ganji, Z.Z. (2009), "A comparative comparison of He's method with perturbation and numerical methods for nonlinear vibrations equations," Inter. J. Nonlinear Dyn. in Eng. Sci., 1(1), 1-20.
- Ghasemi, E., Bayat, M. and Bayat, M. (2011), "Visco-elastic MHD flow of walters liquid B fluid and heat transfer over a non-isothermal stretching sheet", Int. J. Phy. Sci., 6(21), 5022-5039.
- He, J.H. (2007), "Variational Approach for nonlinear oscillators", Chaos. Soliton. Fractals., 34(5), 1430-1439. https://doi.org/10.1016/j.chaos.2006.10.026
- He, J.H. (2010), "Hamiltonian Approach to nonlinear oscillators", Physics Letters A., 374(23), 2312-2314. https://doi.org/10.1016/j.physleta.2010.03.064
- He, J.H. (2002), "Preliminary report on the energy balance for nonlinear oscillations", Mech. Res. Communications., 29(2-3), 107-111. https://doi.org/10.1016/S0093-6413(02)00237-9
- He, J.H. (2008), "An improved amplitude-frequency formulation for nonlinear oscillators", Inter. J. of Nonlinear Sci. and Numerical Simulation., 9(2), 211-212.
- Lai, H.Y., Hsu, J.C. and Chen, C.K. (2008), "An innovative eigenvalue problem solver for free vibration of Euler-Bernoulli beam by using the Adomian decomposition method", Comput. Math. Appl., 56(12), 3204-3220. https://doi.org/10.1016/j.camwa.2008.07.029
- Xu, L. and Zhang, N. (2009), "A variational approach next term to analyzing catalytic reactions in short monoliths", Comput. Math. Appl., 58(11-12), 2460-2463. https://doi.org/10.1016/j.camwa.2009.03.035
- Lewandowski, R. (1987), "Application of the Ritz method to the analysis of nonlinear free vibrations of beams", J. Sound and Vib., 114(1), 91-101. https://doi.org/10.1016/S0022-460X(87)80236-5
- Liu, Y. and Gurram, S.C. (2009), "The use of He's variational iteration method for obtaining the free vibration of an Euler-Bernoulli beam", Math. Comput. Modelling, 50(11-12), 1545-1552. https://doi.org/10.1016/j.mcm.2009.09.005
- Naguleswaran, S. (2003), "Vibration and stability of an Euler-Bernoulli beam with up to three-step changes in cross-section and in axial force", Inter. J. Mech. Sci., 45(9),1563-1579. https://doi.org/10.1016/j.ijmecsci.2003.09.001
- Padovan, J. (1980), "Nonlinear vibrations of general structures", J. Sound Vib., 72, 427-441. https://doi.org/10.1016/0022-460X(80)90355-7
- Pirbodaghi, T., Ahmadian, M.T. and Fesanghary, M. (2009), "On the homotopy analysis method for non-linear vibration of beams", Mech. Res. Communications, 36(2), 143-148. https://doi.org/10.1016/j.mechrescom.2008.08.001
- Sathyamoorthy, M. (1982), "Nonlinear analysis of beams, Part-I: A survey of recent advances", Shock Vib. Dig., 14, 19-35.
- Shahidi, M., Bayat, M., Pakar, I. and Abdollahzadeh, G.R. (2011), "On the solution of free non-linear vibration of beams", Int. J. Phy. Sci., 6(7), 1628-1634.
- Shen, Y.Y. and Mo, L.F. (2009), "The max-min approach to a relativistic equation", Comput. Math. Appl., 58, 2131-2133. https://doi.org/10.1016/j.camwa.2009.03.056
- Soleimani, Kutanaei, S., Ghasemi, E. and Bayat, M. (2011), "Mesh-free modeling of two-dimensional heat conduction between eccentric circular cylinders", Int. J. Phy. Sci., 6(16), 4044-4052.
- Tse, F.S., Morse, I.E. and Hinkle, R.T. (1987), Mechanical Vibrations: Theory and Applications, 2nd Edition, Allyn and Bacon Inc., Bosto.
Cited by
- Nonlinear vibration of stringer shell: An analytical approach vol.229, pp.1, 2015, https://doi.org/10.1177/0954408913509090
- Analytical study of nonlinear vibration of oscillators with damping vol.9, pp.1, 2015, https://doi.org/10.12989/eas.2015.9.1.221
- Vibration analysis of a pre-stressed laminated composite curved beam vol.19, pp.3, 2015, https://doi.org/10.12989/scs.2015.19.3.635
- Nonlinear dynamics of two degree of freedom systems with linear and nonlinear stiffnesses vol.12, pp.3, 2013, https://doi.org/10.1007/s11803-013-0182-0
- Nonlinear vibration of an electrostatically actuated microbeam vol.11, pp.3, 2014, https://doi.org/10.1590/S1679-78252014000300009
- Nonlinear vibration of Euler-Bernoulli beams resting on linear elastic foundation vol.15, pp.4, 2013, https://doi.org/10.12989/scs.2013.15.4.439
- Nonlinear Vibration Analysis of Membrane SAR Antenna Structure Adopting a Vector Form Intrinsic Finite Element vol.31, pp.03, 2015, https://doi.org/10.1017/jmech.2014.97
- Nonlinear free vibration of systems with inertia and static type cubic nonlinearities: An analytical approach vol.77, 2014, https://doi.org/10.1016/j.mechmachtheory.2014.02.009
- Analytical solution for nonlinear vibration of an eccentrically reinforced cylindrical shell vol.14, pp.5, 2013, https://doi.org/10.12989/scs.2013.14.5.511
- A novel approximate solution for nonlinear problems of vibratory systems vol.57, pp.6, 2016, https://doi.org/10.12989/sem.2016.57.6.1039
- High conservative nonlinear vibration equations by means of energy balance method vol.11, pp.1, 2016, https://doi.org/10.12989/eas.2016.11.1.129
- Nonlinear stability and bifurcations of an axially accelerating beam with an intermediate spring-support vol.2, pp.2, 2013, https://doi.org/10.12989/csm.2013.2.2.159
- Vibration of electrostatically actuated microbeam by means of homotopy perturbation method vol.48, pp.6, 2013, https://doi.org/10.12989/sem.2013.48.6.823
- Dynamic Response of a Damped Euler–Bernoulli Beam Having Elastically Restrained Boundary Supports pp.2250-0553, 2018, https://doi.org/10.1007/s40032-018-0485-z
- Vibration analysis of high nonlinear oscillators using accurate approximate methods vol.46, pp.1, 2013, https://doi.org/10.12989/sem.2013.46.1.137
- Accurate semi-analytical solution for nonlinear vibration of conservative mechanical problems vol.61, pp.5, 2013, https://doi.org/10.12989/sem.2017.61.5.657