DOI QR코드

DOI QR Code

Nonlinear P-Δ analysis of steel frames with semi-rigid connections

  • Valipour, Hamid R. (Centre for Infrastructure Engineering and Safety, School of Civil and Environmental Engineering, The University of New South Wales) ;
  • Bradford, Mark A. (Centre for Infrastructure Engineering and Safety, The University of New South Wales)
  • 투고 : 2010.07.29
  • 심사 : 2012.11.13
  • 발행 : 2013.01.25

초록

This paper presents the formulation for a novel force-based 1-D compound-element that captures both material and second order P-${\Delta}$ nonlinearities in steel frames. At the nodal points, the element is attached to nonlinear rotational and a translational springs which represent the flexural and axial stiffness of the connections respectively. By decomposing the total strain in the material as well as the generalised displacements of the flexible connections to their elastic and inelastic components, a secant solution strategy based on a direct iterative scheme is introduced and the corresponding solution strategy is outlined. The strain and slope of the deformed element are assumed to be small; however the equilibrium equations are satisfied for the deformed element taking account of P-${\Delta}$ effects. The formulation accuracy and efficiency is verified by some numerical examples on the nonlinear static, cyclic and dynamic analysis of steel frames.

키워드

참고문헌

  1. Ang, K.M. and Morris, G.A. (1984), "Analysis of three-dimensional frames with flexible beam-column connections", Canadian J. Civil Eng., 11(2), 245-254. https://doi.org/10.1139/l84-037
  2. Ashraf, M., Nethercot, D.A. and Ahmed, B. (2004), "Sway of semi-rigid steel frames Part 1: Regular frames", Eng. Struct., 26(12), 1809-1819. https://doi.org/10.1016/j.engstruct.2004.06.018
  3. Attiogbe, E. and Morris, G. (1991), "Moment-rotation functions for steel connections", J. Struct. Eng., ASCE, 117(6), 1703-1718. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:6(1703)
  4. Bathe, J.K. (1997), Finite element procedures, New York, McGraw Hill.
  5. Bayo, E., Cabrero, J.M. and Gil, B. (2006), "An effective component-based method to model semi-rigid connections for the global analysis of steel and composite structures", Eng. Struct., 28(1), 97-108. https://doi.org/10.1016/j.engstruct.2005.08.001
  6. Carol, I. and Murcia, J. (1989a), "Nonlinear time-dependent analysis of planar frames using an 'exact' formulation. I. Theory", Comput. Struct., 33(1), 79-87. https://doi.org/10.1016/0045-7949(89)90131-4
  7. Carol, I. and Murcia, J. (1989b), "Nonlinear time-dependent analysis of planar frames using an 'exact' formulation. II. Computer implementation for R.C. structures and examples", Comput. Struct., 33(1), 89-102. https://doi.org/10.1016/0045-7949(89)90132-6
  8. Chan, S.L. and Cho, S.H. (2008), "Second-order analysis and design of angle trusses Part I: Elastic analysis and design", Eng. Struct., 30(3), 616-625. https://doi.org/10.1016/j.engstruct.2007.05.010
  9. Chan, S.L. and Chui, P.P.T. (2000), Non-linear static and cyclic analysis of steel frames with semi-rigid connections, Amsterdam, Elsevier.
  10. Chen, W.F., Goto, Y. and Liew, J.Y.R. (1996), Stability design of semi-rigid frames, New York, John Wiley & Sons, Inc.
  11. Chen, W.F. and Kishi, N. (1989), "Semi-rigid steel beam-to-column connections: Data base and modeling", J. Struct. Eng., ASCE, 115(1), 105-119. https://doi.org/10.1061/(ASCE)0733-9445(1989)115:1(105)
  12. Cheng, F.Y. and Juang, D.S. (1986), "Effects of P-Delta and semi-rigid connections on response behaviour of inelastic steel frames subjected to cyclic and siesmic loadings", ASCE, 32-50.
  13. Chiorean, C.G. (2009), "A computer method for nonlinear inelastic analysis of 3D semi-rigid steel frameworks", Eng. Struct., 31(12), 3016-3033. https://doi.org/10.1016/j.engstruct.2009.08.003
  14. Chui, P.P.T. and Chan, S.L. (1996), "Transient response of moment-resistant steel frames with flexible and hysteretic joints". J. Constr. Steel Res., 39(3), 221-243. https://doi.org/10.1016/S0143-974X(96)00038-7
  15. Da S. Vellasco, P.C.G., De Andrade, S.a.L., Da Silva, J.G.S., De Lima, L.R.O. and Brito Jr., O. (2006), "A parametric analysis of steel and composite portal frames with semi-rigid connections", Eng. Struct., 28(4), 543-556. https://doi.org/10.1016/j.engstruct.2005.09.010
  16. Da Silva, J.G.S., De Lima, L.R.O., Da S. Vellasco, P.C.G., De Andrade, S.a.L. and De Castro, R.A. (2008), "Nonlinear dynamic analysis of steel portal frames with semi-rigid connections", Eng. Struct., 30(9), 2566-2579. https://doi.org/10.1016/j.engstruct.2008.02.011
  17. De Lima, L.R.O., Freire, J.L.D.F., Vellasco, P.C.G.D.S., Andrade, S.a.L.D. and Silva, J.G.S.D. (2009), "Structural assessment of minor axis steel joints using photoelasticity and finite elements", J. Constr. Steel Res., 65(2), 466-478. https://doi.org/10.1016/j.jcsr.2008.01.030
  18. Ding, J. and Wang, Y.C. (2009), "Temperatures in unprotected joints between steel beams and concrete-filled tubular columns in fire", Fire Safety J., 44(1), 16-32. https://doi.org/10.1016/j.firesaf.2008.02.004
  19. Hadianfard, M.A. (2012), "Using integrated displacement method to time-history analysis of steel frames with nonlinear flexible connections", Struct. Eng. Mech., 41(5), 675-689. https://doi.org/10.12989/sem.2012.41.5.675
  20. Han, L.H., Huo, J.S. and Wang, Y.C. (2007), "Behavior of steel beam to concrete-filled steel tubular column connections after exposure to fire", J. Struct. Eng., ASCE, 133(6), 800-814. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:6(800)
  21. Iu, C.K., Bradford, M.A. and Chen, W.F. (2009), "Second-order inelastic analysis of composite framed structures based on the refined plastic hinge method", Eng. Struct., 31(3), 799-813. https://doi.org/10.1016/j.engstruct.2008.12.007
  22. Iu, C.K., Chan, S.L. and Zha, X.X. (2007), "Material yielding by both axial and bending spring stiffness at elevated temperature", J. Constr. Steel Res., 63(5), 677-685. https://doi.org/10.1016/j.jcsr.2006.06.037
  23. Ivanyi, M. (2000), "Full-scale tests of steel frames with semi-rigid connections", Eng. Struct., 22(2), 168-179. https://doi.org/10.1016/S0141-0296(98)00106-0
  24. Khandelwal, K., El-Tawil, S., Kunnath, S.K. and Lew, H.S. (2008), "Macromodel-based simulation of progressive collapse: Steel frame structures". J. Struct. Eng., 134(7), 1070-1078. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:7(1070)
  25. Kishi, N. and Chen, W.F. (1990), "Moment-rotation relations of semirigid connections with angles", J. Struct. Eng., ASCE, 116(7), 1813-1834. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:7(1813)
  26. Kukreti, A.R. and Abolmaali, A. (1999), "Moment-rotation hysteresis behavior of top and seat angle steel frame connections", ASCE, J. Struct. Eng., 125(8), 810-820. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:8(810)
  27. Liew, J.Y.R., Yu, C.H., Ng, Y.H. and Shanmugam, N.E. (1997), "Testing of semi-rigid unbraced frames for calibration of second-order inelastic analysis", J. Constr. Steel Res., 41(2-3), 159-195. https://doi.org/10.1016/S0143-974X(97)00009-6
  28. Liu, Y., Xu, L. and Grierson, D.E. (2008), "Compound-element modeling accounting for semi-rigid connections and member plasticity", Eng. Struct., 30(5), 1292-1307. https://doi.org/10.1016/j.engstruct.2007.07.026
  29. Mohamadi-Shooreh, M.R. and Mofid, M. (2008), "Parametric analyses on the initial stiffness of flush end-plate splice connections using FEM", J. Constr. Steel Res., 64(10), 1129-1141. https://doi.org/10.1016/j.jcsr.2007.09.010
  30. Prabha, P., Marimuthu, V., Arul Jayachandran, S., Seetharaman, S. and Raman, N. (2008), "An improved polynomial model for top -and seat- Angle connection", Steel Compos. Struct., 8(5), 403-421. https://doi.org/10.12989/scs.2008.8.5.403
  31. Ramberg, W. and Osgood, W.R. (1943), "Description of stress-strain curves by three parameters", Report No. 902, National Advisory Committee for Aeronautics, Washington, D.C.
  32. Reyes-Salazar, A., Soto-Lopeza, M.E., Bojorquez-Morab, E. and Lopez-Barrazab, A. (2012), "Effect of modeling assumptions on the seismic behavior of steel buildings with perimeter moment frames", Struct. Eng. Mech., 41(2), 183-204. https://doi.org/10.12989/sem.2012.41.2.183
  33. Richard, R.M. and Abbott, B.J. (1975), "Versatile elastic-plastic stress-strain formula", ASCE, J. Engng. Mech., 101(4), 511-515.
  34. Rodrigues, F.C., Saldanha, A.C. and Pfeil, M.S. (1998), "Non-linear analysis of steel plane frames with semi-rigid connections", J. Constr. Steel Res., 46(1-3), 94-97. https://doi.org/10.1016/S0143-974X(98)00105-9
  35. Saravanan, M., Arul Jayachandran, S., Marimuthu, V. and Prabha, P. (2009), "Advanced analysis of cyclic behaviour of plane steel frames with semi-rigid connections", Steel Compos. Struct., 9(4), 381-395. https://doi.org/10.12989/scs.2009.9.4.381
  36. Sekulovic, M. and Nefovska-Danilovic, M. (2008), "Contribution to transient analysis of inelastic steel frames with semi-rigid connections", Eng. Struct., 30(4), 976-989. https://doi.org/10.1016/j.engstruct.2007.06.004
  37. Sekulovic, M. and Salatic, R. (2001), "Nonlinear analysis of frames with flexible connections", Comput. Struct., 79(11), 1097-1107. https://doi.org/10.1016/S0045-7949(01)00004-9
  38. Sekulovic, M., Salatic, R. and Nefovska-Danilovic, M. (2002), "Dynamic analysis of steel frames with flexible connections", Comput. Struct., 80(9), 935-955. https://doi.org/10.1016/S0045-7949(02)00058-5
  39. Shen, J. and Astaneh-Asl, A. (1999), "Hysteretic behavior of bolted-angle connections", J. Constr. Steel Res., 51(3), 201-218. https://doi.org/10.1016/S0143-974X(99)00030-9
  40. Shi, G., Shi, Y., Wang, Y. and Bradford, M.A. (2008), "Numerical simulation of steel pretensioned bolted end-plate connections of different types and details", Eng. Struct., 30(10), 2677-2686. https://doi.org/10.1016/j.engstruct.2008.02.013
  41. Simoes Da Silva, L., De Lima, L.R.O., Da S. Vellasco, P.C.G. and De Andrade, S.a.L. (2004), "Behaviour of flush end-plate beam-to-column joints under bending and axial force", Steel Compos. Struct., 4(2), 77-94. https://doi.org/10.12989/scs.2004.4.2.077
  42. Spyrou, S., Davison, B., Burgess, I. and Plank, R. (2004), "Experimental and analytical studies of steel joint component at elevated temperatures", Fire and Materials, 28(2-4), 83-94. https://doi.org/10.1002/fam.846
  43. Stelmack, T.W., Marley, M.J. and Gerstle, K.H. (1986), "Analysis and tests of flexibly connected steel frames", J. Struct. Eng., ASCE, 112(7), 1573-1588. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:7(1573)
  44. Trahair, N.S., Bradford, M.A., Nethercot, D.A. and Gardner, L. (2008), The Behaviour and Design of Steel Structures to EC3, London, Taylor and Francis.
  45. Valipour, H.R. (2009), "Nonlinear analysis of reinforced concrete frames under extreme loadings, PhD Thesis", PhD Dissertation, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, Australia,
  46. Valipour, H.R. and Bradford, M. (2012), "An efficient compound-element for potential progressive collapse analysis of steel frames with semi-rigid connections", Finite Elements in Analysis and Design, 60, 35-48. https://doi.org/10.1016/j.finel.2012.05.009
  47. Valipour, H.R. and Foster, S.J. (2010a), "Finite element modelling of reinforced concrete structures including catenary action", Comput. Struct., 88(9), 529-538. https://doi.org/10.1016/j.compstruc.2010.01.002
  48. Valipour, H.R. and Foster, S.J. (2010b), "A total secant flexibility-based formulation for frame elements with physical and geometrical nonlinearities". Finite Elements in Analysis and Design, 46(3), 288-297. https://doi.org/10.1016/j.finel.2009.11.002
  49. Vu, A.Q. and Leon, R.T. (2008), "Vibration analysis of steel frames with semi-rigid connections on an elastic foundation", Steel Compos. Struct., 8(4), 265-280. https://doi.org/10.12989/scs.2008.8.4.265
  50. Wang, J.-F. and Li, G.-Q. (2007), "Testing of semi-rigid steel-concrete composite frames subjected to vertical loads", Eng. Struct., 29(8), 1903-1916. https://doi.org/10.1016/j.engstruct.2006.10.014
  51. Wang, J.-F. and Li, G.-Q. (2008), "A practical design method for semi-rigid composite frames under vertical loads", J. Constr. Steel Res., 64(2), 176-189. https://doi.org/10.1016/j.jcsr.2007.05.005
  52. Zarfam, P. and Mofid, M. (2009), "On the assessment of modal nonlinear pushover analysis for steel frames with semi-rigid connections", Struct. Eng. Mech., 32(3), 383-398. https://doi.org/10.12989/sem.2009.32.3.383

피인용 문헌

  1. A new hybrid algorithm for simultaneous size and semi-rigid connection type optimization of steel frames vol.15, pp.1, 2015, https://doi.org/10.1007/s13296-015-3006-4
  2. Seismic response of 3D steel buildings with hybrid connections: PRC and FRC vol.22, pp.1, 2016, https://doi.org/10.12989/scs.2016.22.1.113
  3. Numerical simulation on seismic collapse of thin-walled steel moment frames considering post local buckling behavior vol.94, 2015, https://doi.org/10.1016/j.tws.2015.04.033
  4. Optimum design of steel frames with semi-rigid connections using Big Bang-Big Crunch method vol.14, pp.5, 2013, https://doi.org/10.12989/scs.2013.14.5.431
  5. Harmony search based, improved Particle Swarm Optimizer for minimum cost design of semi-rigid steel frames vol.50, pp.3, 2014, https://doi.org/10.12989/sem.2014.50.3.323
  6. Moment-Rotation Model for Blind-Bolted Flush End-Plate Connections in Composite Frame Structures vol.141, pp.9, 2015, https://doi.org/10.1061/(ASCE)ST.1943-541X.0001147
  7. Structural Response of Timber-Concrete Composite Beams Predicted by Finite Element Models and Manual Calculations vol.17, pp.11, 2014, https://doi.org/10.1260/1369-4332.17.11.1601
  8. Advanced analysis for planar steel frames with semi-rigid connections using plastic-zone method vol.21, pp.5, 2016, https://doi.org/10.12989/scs.2016.21.5.1121
  9. Cyclic testing of steel column-tree moment connections with various beam splice lengths vol.16, pp.2, 2014, https://doi.org/10.12989/scs.2014.16.2.221
  10. Effect of semi-rigid connections in improvement of seismic performance of steel moment-resisting frames vol.19, pp.2, 2015, https://doi.org/10.12989/scs.2015.19.2.467
  11. Seismic Performance of Steel Frames with Semirigid Connections vol.2017, 2017, https://doi.org/10.1155/2017/5284247
  12. Seismic response and energy dissipation of 3D complex steel buildings considering the influence of interior semi-rigid connections: low- medium- and high-rise vol.16, pp.11, 2018, https://doi.org/10.1007/s10518-018-0405-x
  13. Ductility demands and reduction factors for 3D steel structures with pinned and semi-rigid connections vol.16, pp.4, 2013, https://doi.org/10.12989/eas.2019.16.4.469
  14. Tapered beam-column analysis by analytical solution vol.172, pp.11, 2013, https://doi.org/10.1680/jstbu.18.00062
  15. Flexural behavior of steel storage rack base-plate upright connections with concentric anchor bolts vol.33, pp.3, 2019, https://doi.org/10.12989/scs.2019.33.3.357