DOI QR코드

DOI QR Code

Effect of NH3 plasma on thin-film composite membrane: Relationship of membrane and plasma properties

  • Kim, Eun-Sik (Department of Civil & Environmental Engineering, University of Missouri) ;
  • Deng, Baolin (Department of Chemical Engineering, University of Missouri)
  • Received : 2012.09.22
  • Accepted : 2013.03.08
  • Published : 2013.04.25

Abstract

Surface modification by low-pressure ammonia ($NH_3$) plasma on commercial thin-film composite (TFC) membranes was investigated in this study. Surface hydrophilicity, total surface free energy, ion exchange capacity (IEC) and zeta (${\zeta}$)-potentials were determined for the TFC membranes. Qualitative and quantitative analyses of the membrane surface chemistry were conducted by attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectroscopy. Results showed that the $NH_3$ plasma treatment increased the surface hydrophilicity, in particular at a plasma treatment time longer than 5 min at 50 W of plasma power. Total surface free energy was influenced by the basic polar components introduced by the $NH_3$ plasma, and isoelectric point (IEP) was shifted to higher pH region after the modification. A ten (10) min $NH_3$ plasma treatment at 90 W was found to be adequate for the TFC membrane modification, resulting in a membrane with better characteristics than the TFC membranes without the modification for water treatment. The thin-film chemistry (i.e., fully-aromatic and semi-aromatic nature in the interfacial polymerization) influenced the initial stage of plasma modification.

Keywords

Acknowledgement

Supported by : U.S. National Science Foundation

References

  1. Afonso, M.D. (2006), "Surface charge on loose nanofiltration membranes", Desalination, 191(1-3), 262-272. https://doi.org/10.1016/j.desal.2005.04.127
  2. Belfer, S., Purinson, Y. and Kedem, O. (1998), "Surface modification of commercial polyamide reverse osmosis membranes by radical grafting: An ATR-FTIR study", Acta Polym., 49(10-11), 574-582. https://doi.org/10.1002/(SICI)1521-4044(199810)49:10/11<574::AID-APOL574>3.0.CO;2-0
  3. Bhut, B.V., Wickramasinghe, S.R. and Husson, S.M. (2008), "Preparation of high-capacity, weak anion-exchange membranes for protein separations using surface-initiated atom transfer radical polymerization", J. Membr. Sci., 325(1), 176-183. https://doi.org/10.1016/j.memsci.2008.07.028
  4. Brant, J.A., Johnson, K.M. and Childress, A.E. (2006), "Characterizing NF and RO membrane surface heterogeneity using chemical force microscopy", Colloids Surf., A, 280(1-3), 45-57. https://doi.org/10.1016/j.colsurfa.2006.01.024
  5. Bryjak, M., Gancarz, I., Pozniak, G. and Tylus, W. (2002), "Modification of polysulfone membranes 4. Ammonia plasma treatment", Eur. Polym. J., 38(4), 717-726. https://doi.org/10.1016/S0014-3057(01)00236-1
  6. Cantin, S., Bouteau, M., Benhabib, F. and Perrot, F. (2006), "Surface free energy evaluation of well-ordered Langmuir-Blodgett surfaces: Comparison of different approaches", Colloids Surf., A, 276(1-3), 107-115. https://doi.org/10.1016/j.colsurfa.2005.10.025
  7. Castro Vidaurre, E.F., Achete, C.A., Simao, R.A. and Habert, A.C. (2001), "Surface modification of porous polymeric membranes by RF-plasma treatment", Nucl. Instrum. Methods Phys. Res., Sect. B, 175-177, 732-736. https://doi.org/10.1016/S0168-583X(00)00659-5
  8. Chen, J.-R. and Wakida, T. (1997), "Studies on the surface free energy and surface structure of PTFE film treated with low temperature plasma", J. Appl. Polym. Sci., 63(13), 1733-1739. https://doi.org/10.1002/(SICI)1097-4628(19970328)63:13<1733::AID-APP4>3.0.CO;2-H
  9. Childress, A.E. and Elimelech, M. (1996), "Effect of solution chemistry on the surface charge of polymeric reverse osmosis and nanofiltration membranes", J. Membr. Sci., 119(2), 253-268. https://doi.org/10.1016/0376-7388(96)00127-5
  10. Ciszewski, A., Kunicki, J. and Gancarz, I. (2007), "Usefulness of microporous hydrophobic polypropylene membranes after plasma-induced graft polymerization of acrylic acid for high-power nickel-cadmium batteries", Electrochim. Acta, 52(16), 5207-5212. https://doi.org/10.1016/j.electacta.2007.02.030
  11. Fievet, P., Szymczyk, A. and Sba, M. (2006), "Tangential streaming potential as a tool in the characterization of microporous membranes", Desalination, 199(1-3), 18-19. https://doi.org/10.1016/j.desal.2006.03.011
  12. Freger, V., Gilron, J. and Belfer, S. (2002), "TFC polyamide membranes modified by grafting of hydrophilic polymers: an FT-IR/AFM/TEM study", J. Membr. Sci., 209(1), 283-292. https://doi.org/10.1016/S0376-7388(02)00356-3
  13. Gancarz, I., Pozniak, G., Bryjak, M. and Tylus, W. (2002), "Modification of polysulfone membranes 5. Effect of n-butylamine and allylamine plasma", Eur. Polym. J., 38(10), 1937-1946. https://doi.org/10.1016/S0014-3057(02)00093-9
  14. Gohil, G.S., Nagarale, R.K., Binsu, V.V. and Shahi, V.K. (2006), "Preparation and characterization of monovalent cation selective sulfonated poly(ether ether ketone) and poly(ether sulfone) composite membranes", J. Colloid Interface Sci., 298(2), 845-853. https://doi.org/10.1016/j.jcis.2005.12.069
  15. Hu, K. and Dickson, J.M. (2007), "Development an characterization of poly(vinylidene fluoride)-poly(acrylic acid) pore-filled pH-sensitive membranes", J. Membr. Sci., 301(1-2), 19-28. https://doi.org/10.1016/j.memsci.2007.05.031
  16. Ishitsuka, M., Hara, S., Mukaida, M., Haraya, K., Kita, K. and Kato, K. (2008), "Hydrogen separation from dry gas mixtures using a membrane module consisting of palladium-coated amorphous-alloy", Desalination, 234(1-3), 293-299. https://doi.org/10.1016/j.desal.2007.09.097
  17. Kim, E.-S., Kim, Y.J., Yu, Q. and Deng, B. (2009), "Preparation and characterization of polyamide thin-film composite (TFC) membranes on plasma-modified polyvinylidene fluoride (PVDF)", J. Membr. Sci., 344(1-2), 71-81. https://doi.org/10.1016/j.memsci.2009.07.036
  18. Kim, E.S., Yu, Q. and Deng, B. (2011), "Plasma surface modification of nanofiltration (NF) thin-film composite (TFC) membranes to improve anti organic fouling", Appl. Surf. Sci., 257(23), 9863-9871. https://doi.org/10.1016/j.apsusc.2011.06.059
  19. Kim, S.H., Kwak, S.Y., Sohn, B.H. and Park, T.H. (2003), "Design of $TiO_{2}$ NP self-assembled aromatic polyamide TFC membrane as an approach to solve biofouling problem", J. Membr. Sci., 211(1), 157-165. https://doi.org/10.1016/S0376-7388(02)00418-0
  20. Korikov, A.P., Kosaraju, P.B. and Sirkar, K.K. (2006), "Interfacially polymerized hydrophilic microporous thin film composite membranes on porous polypropylene hollow fibers and flat films", J. Membr. Sci., 279(1-2), 588-600. https://doi.org/10.1016/j.memsci.2005.12.051
  21. Kull, K.R., Steen, M.L. and Fisher, E.R. (2005), "Surface modification with nitrogen-containing plasmas to produce hydrophilic, low-fouling membranes", J. Membr. Sci., 246(2), 203-215. https://doi.org/10.1016/j.memsci.2004.08.019
  22. Kwon, O.J., Myung, S.W., Lee, C.S. and Choi, H.S. (2006), "Comparison of the surface characteristics of polypropylene films treated by Ar and mixed gas $(Ar/O_{2})$ atmospheric pressure plasma", J. Colloid Interface Sci., 295(2), 409-416. https://doi.org/10.1016/j.jcis.2005.11.007
  23. Lappan, U., Buchhammer, H.M. and Lunkwitz, K. (1999), "Surface modification of poly (tetrafluoroethylene) by plasma pretreatment and adsorption of polyelectrolytes", Polymer, 40(14), 4087-4091. https://doi.org/10.1016/S0032-3861(98)00647-8
  24. Lazea, A., Kravets, L.I., Albu, B., Ghica, C. and Dinescu, G. (2005), "Modification of polyester track membranes by plasma treatments", Surf. Coat. Technol., 200(1-4), 529-533. https://doi.org/10.1016/j.surfcoat.2005.01.120
  25. Manttari, M., Viitikko, K. and Nystr, M. (2006), "Nanofiltration of biologically treated effluents from the pulp and paper industry", J. Membr. Sci., 272(1-2), 152-160. https://doi.org/10.1016/j.memsci.2005.07.031
  26. Mason, M., Vercruysse, K.P., Kirker, K.R., Frisch, R., Marecak, D.M., Prestwich, G.D. and Pitt, W.G. (2000), "Attachment of hyaluronic acid to polypropylene, polystyrene, and polytetrafluoroethylene", Biomaterials, 21(1), 31-36. https://doi.org/10.1016/S0142-9612(99)00129-5
  27. Matsumoto, H., Konosu, Y., Kimura, N., Minagawa, M. and Tanioka, A. (2007), "Membrane potential across reverse osmosis membranes under pressure gradient", J. Colloid Interface Sci., 309(2), 272-278. https://doi.org/10.1016/j.jcis.2007.01.091
  28. Pozniak, G., Gancarz, I., Bryjak, M. and Tylus, W. (2002), "N-butylamine plasma modifying ultrafiltration polysulfone membranes", Desalination, 146(1-3), 293-299. https://doi.org/10.1016/S0011-9164(02)00490-3
  29. Prakash Rao, A., Desai, N.V. and Rangarajan, R. (1997), "Interfacially synthesized thin film composite RO membranes for seawater desalination", J. Membr. Sci., 124(2), 263-272. https://doi.org/10.1016/S0376-7388(96)00252-9
  30. Tang, C.Y., Kwon, Y.N. and Leckie, J.O. (2007a), "Probing the nano-and micro-scales of reverse osmosis membranes--A comprehensive characterization of physiochemical properties of uncoated and coated membranes by XPS, TEM, ATR-FTIR, and streaming potential measurements", J. Membr. Sci., 287(1), 146-156. https://doi.org/10.1016/j.memsci.2006.10.038
  31. Tang, C.Y., Kwon, Y.-N. and Leckie, J.O. (2009a), "Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: I. FTIR and XPS characterization of polyamide and coating layer chemistry", Desalination, 242(1-3), 149-167. https://doi.org/10.1016/j.desal.2008.04.003
  32. Tang, C.Y., Kwon, Y.-N. and Leckie, J.O. (2009b), "Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: II. Membrane physiochemical properties and their dependence on polyamide and coating layers", Desalination, 242(1-3), 168-182. https://doi.org/10.1016/j.desal.2008.04.004
  33. Tang, C.Y. and Leckie, J.O. (2007b), "Membrane Independent Limiting Flux for RO and NF Membranes Fouled by Humic Acid", Environ. Sci. Technol., 41(13), 4767-4773. https://doi.org/10.1021/es063105w
  34. Tian, J., Liang, H., Yang, Y., Tian, S. and Li, G. (2008), "Enhancement of organics removal in membrane bioreactor by addition of coagulant for drinking water treatment", J. Biotechnol., 136(Suppl. 1), S668-S668.
  35. Turan, M. (2004), "Influence of filtration conditions on the performance of nanofiltration and reverse osmosis membranes in dairy wastewater treatment", Desalination, 170(1), 83-90. https://doi.org/10.1016/j.desal.2004.02.094
  36. Tusek, L., Nitschke, M., Werner, C., Stana-Kleinschek, K. and Ribitsch, V. (2001), "Surface characterization of NH3 plasma treated polyamide 6 foils", Colloids Surf., A, 195(1-3), 81-95. https://doi.org/10.1016/S0927-7757(01)00831-7
  37. Van Oss, C.J. (2006) Interfacial forces in aqueous media CRC/Taylor & Francis.
  38. Van Oss, C.J., Good, R.J. and Chaudhury, M.K. (1988), "Additive and nonadditive surface tension components and the interpretation of contact angles", Langmuir, 4(4), 884-891. https://doi.org/10.1021/la00082a018
  39. Wang, M., Wu, L.G., Zheng, X.C., Mo, J.X. and Gao, C.-J. (2006), "Surface modification of phenolphthalein poly(ether sulfone) ultrafiltration membranes by blending with acrylonitrile-based copolymer containing ionic groups for imparting surface electrical properties", J. Colloid Interface Sci., 300(1), 286-292. https://doi.org/10.1016/j.jcis.2006.03.042
  40. Wavhal, D.S. and Fisher, E.R. (2003), "Membrane surface modification by plasma-induced polymerization of acrylamide for improved surface properties and reduced protein fouling", Langmuir, 19(1), 79-85. https://doi.org/10.1021/la020653o
  41. Xu, P. and Drewes, J.g.E. (2006), "Viability of nanofiltration and ultra-low pressure reverse osmosis membranes for multi-beneficial use of methane produced water", Sep. Purif. Technol., 52(1), 67-76. https://doi.org/10.1016/j.seppur.2006.03.019
  42. Yan, M.G., Liu, L.Q., Tang, Z.Q., Huang, L., Li, W., Zhou, J., Gu, J.S., Wei, X.W. and Yu, H.Y. (2008), "Plasma surface modification of polypropylene microfiltration membranes and fouling by BSA dispersion", Chem. Eng. J., 145(2), 218-224. https://doi.org/10.1016/j.cej.2008.04.007
  43. Yasuda, H. (2005) Luminous chemical vapor deposition and interface engineering Marcel Dekker, New York.
  44. Yu, H.Y., He, X.C., Liu, L.Q., Gu, J.S. and Wei, X.W. (2007), "Surface modification of polypropylene microporous membrane to improve its antifouling characteristics in an SMBR: N2 plasma treatment", Water Res., 41(20), 4703-4709. https://doi.org/10.1016/j.watres.2007.06.039
  45. Zhao, Y., Tang, S., Myung, S.W., Lu, N. and Choi, H.S. (2006), "Effect of washing on surface free energy of polystyrene plate treated by RF atmospheric pressure plasma", Polym. Test., 25(3), 327-332. https://doi.org/10.1016/j.polymertesting.2005.12.007
  46. Zhou, J., Li, W., Gu, J.-S. and Yu, H.-Y. (2010), "Surface modification of polypropylene membrane to improve antifouling characteristics in a submerged membrane-bioreactor: Ar plasma treatment", Membr. Water Treatment, An Int'l J., 1(1).

Cited by

  1. Towards Enhanced Performance Thin-film Composite Membranes via Surface Plasma Modification vol.6, pp.1, 2016, https://doi.org/10.1038/srep29206
  2. Plasma-induced physicochemical effects on a poly(amide) thin-film composite membrane vol.403, 2017, https://doi.org/10.1016/j.desal.2016.06.009
  3. Customizing the surface charge of thin-film composite membranes by surface plasma thin film polymerization vol.537, 2017, https://doi.org/10.1016/j.memsci.2017.05.013
  4. Thin Film Composite and/or Thin Film Nanocomposite Hollow Fiber Membrane for Water Treatment, Pervaporation, and Gas/Vapor Separation vol.10, pp.10, 2018, https://doi.org/10.3390/polym10101051