DOI QR코드

DOI QR Code

Treatment of ground waters in a hollow-fibre liquid membrane contactor for removal of ions

  • Hossain, Md. M. (Department of Chemical & Petroleum Engineering, United Arab Emirates University)
  • Received : 2012.10.30
  • Accepted : 2013.02.06
  • Published : 2013.04.25

Abstract

Metal ions exist in seawater, groundwater and industrial wastewaters. These source waters can be recycled if their concentrations are reduced. A number of processes can be applied for this purpose. Liquid-liquid extraction is one of the promising methods. In this paper, experimental results are presented on the removal of Cr(VI) using Aliquat-336, a reactive carrier, in sunflower oil (a non-toxic solvent). The performance of this new system is compared with those of kerosene (a toxic solvent). The extent of removal of Cr(VI) from samples with high and low concentrations are presented. The process was upgraded to a bench-scale module that can selectively remove about 50-90% Cr(VI) from samples of groundwater. Thus this process can produce water within the acceptable range for recycling and for use in secondary purposes such as irrigation.

Keywords

References

  1. Alonso, A.I., Irabien, A. and Ortiz, M.I. (1996), "Nondispersive extraction of Cr(VI) with Aliquat 336: Influence of carrier concentration", Sep. Sci. Technol., 31(2), 271-282. https://doi.org/10.1080/01496399608000695
  2. Alonso, A.I., Galan, B., Irabien, A. and Ortiz, I. (1997), "Separation of Cr(VI) with aliquat: Chemical equilibrium modeling", Sep. Sci. Technol., 32(9), 1543-1555. https://doi.org/10.1080/01496399708004065
  3. Bachmann, R.T., Wiemken, D., Tengkiat, A.B. and Wilichowski, M. (2010), "Feasibility study on the recovery of hexavalent chromium from a simulated electroplating effluent using Alamine 336 and refined palm oil", Sep. Purif. Technol., 75(3), 303-309. https://doi.org/10.1016/j.seppur.2010.08.019
  4. Bartlett, L. (1998), "Chemistry and controversy: the regulation of environmental chromium", Environ. Eng. Policy, 1, 81-89. https://doi.org/10.1007/s100220050008
  5. Bringas, E., Roman, San M.F. and Ortiz, I. (2006), "Separation and recovery of anionic pollutants by emulsion pertraction technology: Remediation of polluted groundwaters with Cr(VI)", Ind. Eng. Chem. Res., 45(12), 4295-4303. https://doi.org/10.1021/ie051418e
  6. Bringas, E., Roman, San M.F. and Ortiz, I. (2006), "Removal of anionic pollutants from groundwaters using Alamine 336: chemical equilibrium modeling", J. Chem. Technol. Biotechnol., 81(11), 1829-1835. https://doi.org/10.1002/jctb.1610
  7. Brito, F., Ascanio, J., Mateo, S., Hernandez, C., Aeaujo, L., Gili, P., Martin-Zarza, P., Dominguez, S. and Mederos, A. (1997), "Equilibria of chromate(VI) species in acid medium and ab initio studies of these species", Polyhedron, 16(21) , 3835-3846. https://doi.org/10.1016/S0277-5387(97)00128-9
  8. Carrera, J.A., Bringas, E., Roman, San M.F. and I. Ortiz, I. (2009), "Selective membrane alternative to the recovery of zinc from hot-dip galvanizing effluents", J Membr. Sci., 326(2), 672 -680. https://doi.org/10.1016/j.memsci.2008.11.002
  9. Cavaco, S.A., Fernandes, S., Quina, M.M. and Ferreira, L.M. (2007), "Removal of chromium from electroplating industry effluents by ion exchange resins", J Hazard Mater., 144(3), 634-638. https://doi.org/10.1016/j.jhazmat.2007.01.087
  10. Cerna, M. (1995), "Use of solvent extraction for the removal of heavy metals from liquid wastes", Environ. Monit. Assess, 34(2), 151-162. https://doi.org/10.1007/BF00546029
  11. Frenzel, I., Stamatialis, D.F. and Wessling, M. (2006), "Water recycling from mixed chromic acid waste effluents by membrane technology", Sep. Purif. Technol., 49(1), 76-83. https://doi.org/10.1016/j.seppur.2005.08.010
  12. Gameiro, M.L.F., Ismael, M.R.C., Reis, M.T.A. and Carvalh, J.R.M. (2008), "Recovery of copper from ammoniacal medium using liquid membranes with LIX 54", Sep. Purif. Technol., 63(2), 287-296. https://doi.org/10.1016/j.seppur.2008.05.009
  13. Ho, W.S.W. and Poddar, T.K. (2001), "New membrane technology for removal and recovery of chromium from waste waters", Environ. Progr., 20(1), 44-52. https://doi.org/10.1002/ep.670200115
  14. Huang, C.P. and Wu M.H. (1977), "The removal of chromium(VI) from dilute aqueous solution by activated carbon", Water Res., 11(8), 673-679. https://doi.org/10.1016/0043-1354(77)90106-3
  15. Huang, H.C., Huang, C.H. and Chen, C.-H. (1998), "Transport of chromium (VI) through a supported liquid membrane containing Tri-n-octylphosphine oxide", Sep. Sci. Technol., 33(13), 1919-1935. https://doi.org/10.1080/01496399808545037
  16. Klassen, R. and Jansen, A.E. (2001), "The membrane contactor: environmental applications and possibilities", Environ. Prog., 20(1), 37-43. https://doi.org/10.1002/ep.670200114
  17. Kongsricharoern, N. and Polprasert, C. (1995), "Elecrochemical precipitation of chromium $(Cr^{6+})$ from electroplating wastewater", Water Sci. Technol., 31(9), 100-117.
  18. Logsdail, D.H. and Slater, M.J. (1993), Solvent extraction in the process industries, Vol. 2, Elsevier, London.
  19. Malkoc, E. and Nuhoglu, Y. (2006), "Potential of tea industry waste for chromium(VI) removal from aqueous solutions: thermodynamic and kinetic studies", Sep. Purif. Technol., 54(3), 291-298.
  20. Molinari, H.R., Drioli, R.E. and Pantano, G. (1989), "Stability and effect of diluents in supported liquid membranes for Cr(III), Cr(VI) and Cd(II) recovery", Sep. Sci. Technol., 24(12-13), 1015-1032. https://doi.org/10.1080/01496398908049886
  21. Melita L. and Popescu, M. (2008), "Removal of Cr(VI) from industrial water effluents and surface waters using activated composite membranes", J. Membr. Sci., 312(1-2), 157-162. https://doi.org/10.1016/j.memsci.2007.12.049
  22. Murad, A. and S. AlRashdei, S. (2010), "Processes behind groundwater deterioration at Eastern Part of Al-Ain area, UAE", Proceedings of the 10th Annual UAE University Research Conference, Al Ain, UAE.
  23. Oritz, I., Bringas, E., Roman, San M.F. and Urtiaga, A.M. (2004), "Selective separation of zinc and iron from spent pickling solutions by membrane-based solvent extraction: process viability", Sep. Sci. Technol., 39(10), 2441-2455.
  24. Papp, J.F. (1994), Chromium life cycle study, U.S. Bureau of Mines, Information Circular 9411.
  25. Rao V.M. and Sastri, M.N. (1980), "Solvent extraction of chromium: a review", Talanta, 27(10), 771-777. https://doi.org/10.1016/0039-9140(80)80106-8
  26. Richards, L.A., Richards, B.S. and Schafer, A.I. (2011), "Renewable energy powered membrane systems: Inorganic contaminant removal from Australian Groundwaters", Membrane Water Treatment, An Int'l J., 2(4), 239-250. https://doi.org/10.12989/mwt.2011.2.4.239
  27. Samaniego, H., Roman, San M.F. and Ortiz, I. (2006), "Modelling of the extraction and back-extraction equilibria of zinc from spent pickling solutions", Sep. Sci. Technol., 41(4), 757-769. https://doi.org/10.1080/01496390600552289
  28. Samaniego, H., Roman, San M.F. and I. Ortiz, I. (2007), "Kinetics of zinc recovery from spent pickling effluents", Ind. Eng. Chem., 46(3), 907-912. https://doi.org/10.1021/ie060836w
  29. Yang, X.J., Fane, A.G. and Soldenhoff, K. (2003), "Comparison of liquid membrane processes for metal separations: permeability, stability and selectivity", Ind. Eng. Chem. Res., 42(2), 392-403. https://doi.org/10.1021/ie011044z

Cited by

  1. PVDF/h-BN hybrid membranes and their application in desalination through AGMD vol.9, pp.4, 2013, https://doi.org/10.12989/mwt.2018.9.4.221
  2. The Effect of Emulsifiers on the Emulsion Stability and Extraction Efficiency of Cr(VI) Using Emulsion Liquid Membranes (ELMs) Formulated with a Green Solvent vol.10, pp.4, 2013, https://doi.org/10.3390/membranes10040076