DOI QR코드

DOI QR Code

Study of viscoelastic model for harmonic waves in non-homogeneous viscoelastic filaments

  • Received : 2013.01.01
  • Accepted : 2013.03.09
  • Published : 2013.03.25

Abstract

A five parameter viscoelastic model is developed to study harmonic waves propagating in the non-homogeneous viscoelastic filaments of varying density. The constitutive relation for five parameter model is first developed and then it is applied for harmonic waves in the specimen. In this study, it is assumed that density, rigidity and viscosity of the specimen i.e., rod are space dependent. The specimen is non-homogeneous, initially unstressed and at rest. The method of non-linear partial differential equation has been used for finding the dispersion equation of harmonic waves in the rods. A simple method is presented for reflections at the free end of the finite non-homogeneous viscoelastic rods. The harmonic wave propagation in viscoelastic rod is also presented numerically with MATLAB.

Keywords

References

  1. Acharya, D.P., Roy, I. and Biswas, P.K. (2008), "Vibration of an infinite inhomogeneous transversely isotropic viscoelastic medium with a cylindrical hole", Appl. Math. Mech., 29(3), 1-12. https://doi.org/10.1007/s10483-008-0101-7
  2. Achenbach, J.D. and Reddy, D.P. (1967), "Note on the wave-propagation in linear viscoelastic media", ZAMP, 18(1), 141-143. https://doi.org/10.1007/BF01593905
  3. Alfrey, T. (1944), "Non-homogeneous stress in viscoelastic media", Quart. Appl. Math, 2, 113. https://doi.org/10.1090/qam/10499
  4. Barberan, J. and Herrera, J. (1966), "Uniqueness theorems and speed of propagation of signals in viscoelastic materials", Arch. Ration. Mech. An., 23(3), 173-190.
  5. Batra, R.C. (1998), "Linear constitutive relations in isotropic finite elasticity", J. Elasticity, 51(3), 243-245. https://doi.org/10.1023/A:1007503716826
  6. Bert, C.W. and Egle, D.M. (1969), "Wave propagation in a finite length bar with variable area of crosssection", J. Appl. Mech.-ASME, 36, 908-909.
  7. Bhattacharya, S. and Sengupta, P.R. (1978), "Disturbances in a general viscoelastic medium due to impulsive forces on a spherical cavity", Gerlands Beitr Geophysik, Leipzig, 87(8), 57-62.
  8. Biot, M.A. (1940), "Influence of initial stress on elastic waves", J. Appl. Phys., 11(8), 522-530. https://doi.org/10.1063/1.1712807
  9. Bland, D.R. (1960), Theory of linear viscoelasticity, Pergamon Press, Oxford.
  10. Carslaw, H.S. and Jaeger, J.C. (1963), Operational methods in applied math, Second Ed., Dover Publication, New York.
  11. Christensen, R.M. (1971), Theory of viscoelasticity, Academic Press.
  12. Friedlander, F.G. (1947), "Simple progressive solutions of the wave equation", Proc. Camb. Phil. Soc., 43(3), 360-373. https://doi.org/10.1017/S0305004100023598
  13. Gurdarshan, S. and Avtar, S. (1980), "Propagation, reflection and transmission of longitudinal waves in nonhomogeneous five parameter viscoelastic rods", Indian J. Pure Ap. Mat., 11(9), 1249-1257.
  14. Kakar, R., Kaur, K. and Gupta, K.C. (2012), "Analysis of five-parameter viscoelastic model under dynamic loading", J. Acad. Indus. Res., 1(7), 419-426.
  15. Kakar, R. and Kaur, K. (2013), "Mathematical analysis of five parameter model on the propagation of cylindrical shear waves in non-homogeneous viscoelastic media", Int. J. Phys. Math. Sci., 4(1), 45-52.
  16. Karl, F.C. and Keller, J.B. (1959), "Elastic waves propagation in homogeneous and inhomogeneous mediaz", J. Acoust. Soc. Am., 31(6), 694-705. https://doi.org/10.1121/1.1907775
  17. Kaur, K., Kakar, R. and Gupta, K.C. (2012), "A dynamic non-linear viscoelastic model", Int. J. Eng. Sci. Technol., 4(12), 4780-4787.
  18. Kaur, K., Kakar, R., Kakar, S. and Gupta, K.C. (2013), "Applicability of four parameter viscoelastic model for longitudinal wave propagation in non-homogeneous rods", Int. J. Eng. Sci. Technol., 5(1), 75-90.
  19. Kumar, R. and Gupta, R.R. (2010), "Analysis of wave motion in micropolar transversely isotropic thermoelastic half space without energy dissipation", Interact. Multiscale Mech., 3(2), 145-156. https://doi.org/10.12989/imm.2010.3.2.145
  20. Lei, Y., Lee, J.D. and Zeng, X. (2008), "Response of a rocksalt crystal to electromagnetic wave modeled by a multiscale field theory", Interact. Multiscale Mech., 1(4), 467-476. https://doi.org/10.12989/imm.2008.1.4.467
  21. Mirsky, I. (1965), "Wave propagation in transversely isotropic circular cylinders part I: Theory", J. Acoust. Soc. Am., 37(6), 1016-1026. https://doi.org/10.1121/1.1909508
  22. Murayama, S. and Shibata, T. (1961), "Rheological properties of clays", 5th International Conference of Soil Mechanics and Foundation Engineering , Paris, 1, 269- 273.
  23. Moodie, T.B. (1973), "On the propagation, reflection and transmission of transient cylindrical shear waves in non-homogeneous four-parameter viscoelastic media", B. Aust. Math. Soc., 8, 397-411. https://doi.org/10.1017/S0004972700042696
  24. Ponnusamy, P. and Selvamani, R. (2012), "Wave propagation in a generalized thermo elastic plate embedded in elastic medium", Interact. Multiscale Mech., 5(1), 13-26. https://doi.org/10.12989/imm.2012.5.1.013
  25. Schiffman, R.L. Ladd, C.C. and Chen, A.T.F. (1964), "The secondary consolidation of clay, rheology and soil mechanics", Proceedings of the International Union of Theoretical and Applied Mechanics Symposium, Grenoble, Berlin, 273-303.
  26. Tsai, Y.M. (1991), "Longitudinal motion of a thick transversely isotropic hollow cylinder", J. Press. Vessel Technol., 113, 585-589. https://doi.org/10.1115/1.2928799
  27. White, J.E. and Tongtaow, C. (1981), "Cylindrical waves in transversely isotropic media", J. Acoust. Soc. Am., 70(4), 1147-1155. https://doi.org/10.1121/1.386946

Cited by

  1. Rheological behaviour and applicability of viscoelastic model for wave propagation in non-homogeneous polymer rods vol.10, pp.1, 2014, https://doi.org/10.1108/mmms-03-2013-0025