DOI QR코드

DOI QR Code

Torsional surface waves in a non-homogeneous isotropic layer over viscoelastic half-space

  • 투고 : 2012.06.11
  • 심사 : 2012.11.30
  • 발행 : 2013.03.25

초록

The aim of this paper is to study the propagation of torsional surface waves in non-homogeneous isotropic layer of finite thickness placed over a homogeneous viscoelastic half-space, when both density and rigidity of the non-homogeneous medium are assumed to vary exponentially with depth. The frequency equations are obtained by using simple method of separation of variables. Further, it is seen that when viscoelastic parameter and non-homogeneity parameter is neglected, the dispersion equation gives the dispersion equations of Love waves in homogeneous, elastic and isotropic layer placed over homogeneous viscoelastic medium. The problem has been solved numerically and the effects of various inhomogeneities of the medium on torsional waves have been illustrated graphically.

키워드

참고문헌

  1. Achenbach, J.D. and Reddy, D.P. (1967), "Note on the wave-propagation in linear viscoelastic media", ZAMP, 18(1), 141-143. https://doi.org/10.1007/BF01593905
  2. Alfrey, T. (1944), "Non-homogeneous stress in viscoelastic media", Quart. Appl. Math., 2, 113. https://doi.org/10.1090/qam/10499
  3. Akbarov, S.D., Kepceler, T. and Egilmez, M. (2011), "Torsional wave dispersion in a finitely pre-strained hollow sandwich circular cylinder", J. Sound Vib., 330(18-19), 4519-4537. https://doi.org/10.1016/j.jsv.2011.04.009
  4. Biot, M.A. (1965), Mechanics of incremental deformations, J. Willy.
  5. Bland, D.R. (1960), Theory of linear viscoelasticity, Pergamon Press, Oxford.
  6. Carslaw, H.S. and Jaeger, J.C. (1963), Operational methods in applied math, Second Ed., Dover Publication, New York.
  7. Christensen, R.M. (1971), Theory of viscoelasticity, Academic Press.
  8. Davini, C., Paroni, R. and Puntle, E. (2008), "An asymptotic approach to the torsional problem in thin rectangular domains", Meccanica, 43(4), 429-435. https://doi.org/10.1007/s11012-007-9106-2
  9. Dey, S., Gupta, A., Gupta, S. and Prasad, A. (2000), "Torsional surface waves in nonhomogeneous anisotropic medium under initial stress", J. Eng. Mech., 126(11), 1120-1123. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:11(1120)
  10. Dey, S., Gupta, A., Gupta, S., Karand, K. and De, P.K. (2003), "Propagation of torsional surface waves in an elastic layer with void pores over an elastic half space with void pores", Tamkang J. Sci. Eng., 6(4), 241-249.
  11. Dey, S., Gupta, A. and Gupta, S. (2002), "Effect of gravity and initial stress on torsional surface waves in dry sandy medium", J. Eng. Mech., 128(10), 1115-1118. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:10(1116)
  12. Dey, S., Gupta, A. and Gupta, S. (1996), "Torsional surface waves in nonhomogeneous and anisotropic medium", J. Acoust. Soc. Am., 99(5), 2737-2741. https://doi.org/10.1121/1.414815
  13. Frank, C., Karal, Jr. and Keller, Joseph B. (1959), "Elastic wave propagation in homogeneous and inhomogeneous media", J. Acoust. Soc. Am., 31(6), 694-705. https://doi.org/10.1121/1.1907775
  14. Gubbins, D. (1990), Seismology and plate techtonics, Cambridge University Press, Cambridge.
  15. Gupta, S., Majhi, D., Vishwakarma, S. and Kundu, S. (2011), "Propagation of torsional surface waves under the effect of irregularity and initial stress", Appl. Math., 2(12), 453-1461.
  16. Gupta, S., Majhi, D.K., Kundu, S. and Vishwakarma, S.K. (2012), "Propagation of torsional surface waves in a homogeneous layer of finite thickness over an initially stressed heterogeneous mantle", Appl. Math. Comput., 218, 5655-5664. https://doi.org/10.1016/j.amc.2011.11.060
  17. Kumar, R. and Gupta, R.R. (2010), "Analysis of wave motion in micropolar transversely isotropic thermoelastic half space without energy dissipation", Interact. Multiscale Mech., 3(2), 145-156. https://doi.org/10.12989/imm.2010.3.2.145
  18. Pal, P.C. (2000), "A note on torsional body forces in a viscoelastic half space", Indian J. Pure Ap. Mat., 31(2), 207-213.

피인용 문헌

  1. Influence of impulsive line source and non-homogeneity on the propagation of SH-wave in an isotropic medium vol.6, pp.3, 2013, https://doi.org/10.12989/imm.2013.6.3.287
  2. Magneto-electro-viscoelastic torsional waves in aeolotropic tube under initial compression stress vol.11, pp.4, 2014, https://doi.org/10.1590/S1679-78252014000400002
  3. Torsional wave in an inhomogeneous prestressed elastic layer overlying an inhomogeneous elastic half-space under the effect of rigid boundary vol.9, pp.4, 2015, https://doi.org/10.12989/eas.2015.9.4.753
  4. Torsional waves in a magneto-viscoelastic layer over an inhomogeneous substratum vol.131, pp.8, 2016, https://doi.org/10.1140/epjp/i2016-16263-7
  5. Electro-magneto-thermoelastic surface waves in non-homogeneous orthotropic granular half space vol.7, pp.1, 2014, https://doi.org/10.12989/gae.2014.7.1.001