DOI QR코드

DOI QR Code

Strength characteristics of transversely isotropic rock materials

  • Yang, Xue-Qiang (Civil and Traffic Engineering School, Guangdong University of Technology) ;
  • Zhang, Li-Juan (Civil and Traffic Engineering School, Guangdong University of Technology) ;
  • Ji, Xiao-Ming (Civil and Traffic Engineering School, Guangdong University of Technology)
  • Received : 2012.07.31
  • Accepted : 2013.01.10
  • Published : 2013.02.25

Abstract

For rock materials, a transversely isotropic failure criterion established through the extended Lade-Duncan failure criterion incorporating an anisotropic state scalar parameter, which is a joint invariant of deviatoric microstructure fabric tensor and normalized deviatoric stress tensor, is verified with the results of triaxial compressive data on Tournemire shale. For torsional shear mode with $0{\leq}b{\leq}0.75$, rock shear strengths decrease with ${\alpha}$ increasing until the rock shear strength approaches minimum value at ${\alpha}{\approx}40^{\circ}$, and after this point, the rock shear strengths increase as ${\alpha}$ increases further. For the torsional shear mode with b > 0.75, rock shear strengths are almost constant for ${\alpha}{\leq}40^{\circ}$, but it increases with increase in ${\alpha}$ afterwards. The rock shear strength variation against ${\alpha}$ agrees with shear strength changing tendency of heavily OCR natural London Clays tested before. Prediction results show that the transversely isotropic failure criterion proposed in the paper is reasonable.

Keywords

References

  1. Dafalias, Y.F., Papadimitriou, A.G. and Li, X.S. (2004), "Sand plasticity model accounting for inherent fabric anisotropy", J. Eng. Mech., 130(11), 1319-1333. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:11(1319)
  2. Hashiguchi, K. (2002), "A proposal of the simplest convex-conical surface for soils", Soil. Found., 42(3), 107-113. https://doi.org/10.3208/sandf.42.3_107
  3. Houlsby, G.T. (1986), "A general failure criterion for frictional and cohesive materials", Soil. Found., 26(2), 97-101. https://doi.org/10.3208/sandf1972.26.2_97
  4. Lade, P.V. and Duncan, J.M. (1975), "Elastoplastic stress-strain theory for cohesionless soil", J. Geotech. Eng. - ASCE, 101(10), 1037-1053.
  5. Lade, P.V. (1982), "Three -parameter failure criterion for concrete", J. Eng. Mech. Div. - ASCE, 108(5), 850-563.
  6. Lade, P.V. (1990), "Single-hardening model with application to NC clay", J. Geotech. Eng., 116(3), 394-414. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:3(394)
  7. Lade, P.V. (2008), "Failure criterion for cross-anisotropic soils", J. Geotech. Geoenviron. Eng., 124(1), 117-124.
  8. Li, X.S. and Dafalias, Y.F. (2002), "Constitutive modeling of inherently anisotropic sand behavior", J. Geotech. Geoenviron. Eng., 128(10), 868-880. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:10(868)
  9. Niandou, H., Shao, J.F. and Henry, J.P. et al. (1997), "Laboratory investigation of the mechanical behavior of Tournemire shale", Int. J. Rock. Mech. Min. Sci., 34(1), 3-16. https://doi.org/10.1016/S1365-1609(97)80029-9
  10. Nishimura, S., Minh, N.A. and Jardine, R.J. (2007), "Shear strength anisotropy of natural London clay", Geotechnique, 57(1), 49-62. https://doi.org/10.1680/geot.2007.57.1.49
  11. Ochiai, H. and Lade, P.V. (1983), "Three-dimensional behavior of sand with anisotropic fabric", J. Geotech. Eng., 109(10), 1313-1328. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:10(1313)
  12. Oda, M. (9172), "Initial fabrics and their relations to mechanical properties of granular materials", Soil. Found., 12 (1), 17-36. https://doi.org/10.3208/sandf1960.12.17
  13. Oda, M. and Nayayama, H. (1989), "Yield function for soil with anisotropic fabric", Eng. Mech. - ASCE, 115(1), 89-104. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:1(89)
  14. Pietruszczak, S. and Mroz, Z. (2001), "On failure criteria for anisotropic cohesive-frictional materials", Int. J. Numer. Anal. Method. Geomech., 25(5), 509-524. https://doi.org/10.1002/nag.141
  15. Pietruszczak, S., Lydzba, D. and Shao, J.F. (2002), "Modeling of inherent anisotropy in sedimentary rock". Int. J. Solid. Struct., 39, 637-648. https://doi.org/10.1016/S0020-7683(01)00110-X
  16. Yang, X.Q., Fung, W.H. and Au, S.K. et al. (2006a), "A note on the Lade-Duncan failure criterion", Geomech. Geoeng. Int. J., 1(4), 299-304. https://doi.org/10.1080/17486020600970797
  17. Yang, X.Q., Zhu, Z.Z. and He, S.X. et al. (2006b), "Researches on failure criteria of Lade-Duncan, Matsuoka-Nakai and Ottosen", Chinese J. Geotech. Eng., 28(3), 337-342. (in Chinese)
  18. Whittle, A.J., DeGroot, D.J. and Ladd, C.C. et al. (1994), "Model prediction of anisotropic behavior of Boston Blue clay", J. Geotech. Eng., 120(1), 199-224. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:1(199)

Cited by

  1. Relationship of box counting of fractured rock mass with Hoek-Brown parameters using particle flow simulation vol.9, pp.5, 2015, https://doi.org/10.12989/gae.2015.9.5.619
  2. Fracability Estimation for Longmaxi Shale: Coupled Brittleness, Stress–Strain and Fracture vol.43, pp.11, 2018, https://doi.org/10.1007/s13369-018-3422-9
  3. Characteristic of size distribution of rock chip produced by rock cutting with a pick cutter vol.15, pp.3, 2013, https://doi.org/10.12989/gae.2018.15.3.811