Abstract
In this paper, we propose a human detection technique using thermal imaging camera. The proposed method is useful at night or rainy weather where a visible light imaging cameras is not able to detect human activities. Under the observation that a human is usually brighter than the background in the thermal images, we estimate the preliminary human regions using the statistical confidence measures in the gray-level, brightness histogram. Afterwards, we applied Gaussian filtering and blob labeling techniques to remove the unwanted noise, and gather the scattered of the pixel distributions and the center of gravities of the blobs. In the final step, we exploit the aspect ratio and the area on the unified object region as well as a number of the principal components extracted from the object region images to determine if the detected object is a human. The experimental results show that the proposed method is effective in environments where visible light cameras are not applicable.
본 논문에서는 조명이 없는 야간 및 악천후 등 가시영상 카메라를 이용하여 사람 영역을 추정하기 힘든 환경에서의 대안으로 열화상 카메라를 이용한 사람검출 방법을 제안한다. 일반적인 열화상에서 사람은 주변 배경에 비해 밝게 표현되는 특징을 이용하여, 밝기 히스토그램 상의 사람의 열화상의 신뢰 구간을 계산해 1차적으로 사람 영역을 추정한 뒤, 가우시안 필터링 및 레이블링을 통해 불필요한 잡음을 제거한다. 그 이후에 Self-occlusion 등에 의해 분리된 사람 영역을 각 blob별 무게중심 및 분포정보를 이용하여 하나의 객체 영역을 추정한다. 최종적으로 추정 영역에 대한 가로와 세로의 비율 및 크기 정보와 주성분분석(PCA; principal component analysis)를 이용하여 추정된 영역에 대하여 사람인지 여부를 결정한다. 실험결과를 통하여, 제안된 방법은 가시영상에서 검출하기 힘든 환경들에 대하여 좋은 성능을 나타내는 것을 알 수 있었다.