DOI QR코드

DOI QR Code

An Efficient Implementation of Kruskal's and Reverse-Delete Minimum Spanning Tree Algorithm

Kruskal과 역-삭제 최소신장트리 알고리즘의 효율적 구현 방법

  • Choi, Myeong-Bok (Dept. of Multimedia Engineering, Gangnung-Wonju National University) ;
  • Lee, Sang-Un (Dept. of Multimedia Engineering, Gangnung-Wonju National University)
  • 최명복 (강릉원주대학교 멀티미디어공학과) ;
  • 이상운 (강릉원주대학교 멀티미디어공학과)
  • Received : 2013.01.07
  • Accepted : 2013.04.12
  • Published : 2013.04.30

Abstract

This paper suggests a method to reduce the number of performances of Kruskal and Reverse-delete algorithms. Present Kruskal and Reverse-delete algorithms verify whether the cycle occurs within the edges of the graph. For this reason, they have problems of unnecessarily performing extra algorithms from the edges, even though they've already obtained the minimum spanning tree. This paper, first of all, suggests the 1st method which reduces the no. of performances by introducing stop point criteria of algorithm, but at the same time, performs algorithms from all the edges, just like how Kruskal and Reverse-delete algorithms. Next, it suggests the 2nd method which finds the minimum spanning tree from the remaining edges after getting rid of all the unnecessary edges which are considered not to affect the minimum spanning tree. These suggested methods have an effect of terminating algorithm at least 1.4 times and at most 3.86times than Kruskal and Reverse-delete algorithms, when applied to the real graphs. We have found that the 2nd method of the Reverse-delete algorithm has the fastest speed in terminating an algorithm, among 4 algorithms which are results of the 2 suggested methods being applied to 2 algorithms.

본 논문은 최소신장트리를 구하는 Kruskal과 역-삭제 알고리즘의 수행 횟수를 줄이는 방법을 제안하였다. 기존의 Kruskal과 역-삭제 알고리즘은 그래프의 모든 간선들을 대상으로 사이클이 발생하는지 여부를 검증한다. 이로 인해 알고리즘 수행 과정에서 이미 최소신장트리를 얻었음에도 불구하고 나머지 간선들에 대해 알고리즘을 추가로 불필요하게 수행하는 문제점을 갖고 있다. 본 논문은 먼저, Kruskal과 역-삭제 알고리즘과 동일하게 모든 간선들을 대상으로 알고리즘은 수행하지만 알고리즘 종료 시점 기준을 적용하여 수행 횟수를 줄이는 "제1방법"을 제안하였다. 다음으로, 최소신장트리에 전혀 영향을 미치지 않는 불필요한 간선을 사전에 제거하고 남은 간선들을 대상으로 최소신장트리를 찾는 "제2방법"을 제안하였다. 제안된 방법들을 실제 그래프들에 적용한 결과 기존의 Kruskal과 역-삭제 알고리즘보다 최소 1.4배에서 최대 3.86배 빨리 알고리즘을 종료시키는 효과를 얻었다. 제안된 2개 방법을 2개 알고리즘에 적용한 4개 알고리즘 중에서 역-삭제 알고리즘 "제2방법"이 가장 빨리 알고리즘을 종료시키는 결과를 얻었다.

Keywords

References

  1. Wikipedia, "Minimum Spanning Tree," http://en.wi kipedia.org/ wiki/Minimum_spanning_tree, Wikim edia Foundation, Inc., 2007.
  2. O. Boruvka, "O Jistem Problemu Minimalnim," Prace Mor. Prrodved. Spol. V Brne (Acta Societ. Natur. Moravicae), Vol. III, No. 3, pp. 37-58, 1926.
  3. J. Nesetril, E. Milkova, and H. Nesetrilova, "Otakar Boruvka on Minimum Spanning Tree Problem (Translation of the both 1926 Papers, Comments, Hist ory)," DMATH: Discrete Mathematics, Vol. 233, 2001.
  4. R. C. Prim, "Shortest Connection Networks and So me Generalisations," Bell System Technical Journal, Vol. 36, pp. 1389-1401, 1957. https://doi.org/10.1002/j.1538-7305.1957.tb01515.x
  5. J. B. Kruskal, "On the Shortest Spanning Subtree and The Traveling Salesman Problem," Proceedings of the American Mathematical Society, Vol. 7, pp. 48-50, 1956. https://doi.org/10.1090/S0002-9939-1956-0078686-7
  6. Wikipedia,"Reverse-Delete Algorithm," http://en.wikipedia.org/wiki/Reverse_delete_algorithm, Wiki media Foundation, Inc., 2007.
  7. Wikipedia, "Graph (mathematics)," http://en.wikipe dia.org/wiki/ Graph_(mathematics), Wikimedia Foundation, Inc., 2010.
  8. Wikipedia, "Glossary of Graph Theory," http://en.wikipedia.org/ wiki/Glossary_of_graph_theory, Wikimedia Foundation, Inc., 2010.
  9. WWL. Chen, "Discrete Mathematics," Department of Mathematics, Division of ICS, Macquarie University, Australia, http://www.maths.mq.edu.au/-wchen/lndmfolder/lndm.html, 2003.
  10. C. Peiper, CS 400 - Data Structures for Non CSMajors," http://www.cs.uiuc.edu/class/fa05/cs400 /_labs/Lab12/suuri/, 2005.
  11. H. K. Park, C. H. Lee, "Embedded System Imple mentation of Tree Routing Structure for Ubiquitou s Sensor Network," Journal of the Korea Academi a-Industrial cooperation Society, v.11 no.10, pp.4531-4535, October 2011.
  12. W. J. Wang, C. S. Han, "Bond Graph Modeling, Analysis and Control of Dual Stage System," Journal of the Korea Academia-Industrial cooperation Society, v.13, no.4, pp.1453-1459, April 2012. https://doi.org/10.5762/KAIS.2012.13.4.1453
  13. M. B. Choi, S. U. Lee, "A Prim Minimum Spannin g Tree Algorithm for Directed Graph," IWIT, v.12 no.3, 2012.
  14. Wikipedia, "Prim's Algorithm," http://en.wikipedi a.org/wiki/ Prims_algorithm, Wikimedia Foundation, Inc., 2010.