DOI QR코드

DOI QR Code

Modal Characteristics of Plasmonic Multimode Interference Couplers with Stepped Structure

플라즈마 계단형 다중모드 간섭 결합기의 모드 특성

  • 호광춘 (한성대학교 정보통신공학과)
  • Received : 2013.01.29
  • Accepted : 2013.04.12
  • Published : 2013.04.30

Abstract

A novel architecture to reduce dramatically the coupling length of multimode interference-based couplers (MMICs) is proposed by replacing conventionally designed MMICs by cascaded two-section plasmonic stepped MMICs (PS-MMIC). For the 60% cross power splitting ratio in a stepped-width MMIC, the coupling length of device results in around 42% length reduction. Furthermore, the power splitting ratio and coupling length of plasmonic MMIC just vary around 1~2% along the variation of refractive index. On the contrast, those factors for the variation of MMIC's width strongly vary around 30~40%.

플라즈마 다중모드 간섭 결합기 (MMIC)를 계단형으로 구성하여 전형적인 방법으로 설계된 MMIC 보다 결합길이를 현저하게 줄일 수 있는 새로운 구조가 본 논문에서 제안되었다. 전송폭이 계단형인 플라즈마 MMIC에서 60%의 cross 전력분배율에 대하여, 결합길이는 약 42%가 줄어들었다. 또한, 굴절률 변화에 따른 플라즈마 MMIC의 전력분배율과 결합길이는 약 2~6%로 거의 변화가 없었으나, 전송폭을 변화 시켰을 때 전력분배율과 결합길이는 약 30~40%로 큰 변화를 나타내었다.

Keywords

References

  1. L. Soldano and E. Pennings, "Optical multi-mode interference devices based on self-imaging: Principles and applications," J. Lightwave Technol., Vol. 13, No. 4, pp. 615-627, 1995. https://doi.org/10.1109/50.372474
  2. Jong-Moo Lee, Joon Tae Ahn, Doo Hee Cho, Jung Jin Ju, Myung-Hyun Lee, and Kyong Hon Kim, "Vertical Coupling of Polymeric Double-Layered Waveguides Using a Stepped MMI Coupler," ETRI Journal, Vol. 25, No. 2, pp. 81-88, 2003. https://doi.org/10.4218/etrij.03.0102.0209
  3. D. Levy, Y. Li, R. Scarmozzino, and R. Osgood, Jr., "A new design for ultracompact multimode interference-based couplers," IEEE Photon. Technol. Lett., Vol. 10, No. 1, pp. 96-98, 1998. https://doi.org/10.1109/68.651120
  4. L. Spiekman, Y. Oei, E. Metaal, F. Groen, I. Moerman, and M. Smit, "Extremely small multimode interference couplers and ultrashort bends on InP by deep etching," IEEE Photon. Technol. Lett., Vol. 6, No. 8, pp. 1008-1010, 1994. https://doi.org/10.1109/68.313078
  5. R. Zia, J. A. Schuller, A. Chandran, M. L. Brongersma, "Plasmonics: the next chip-scale technology," Mater. Today, Vol. 9, pp. 20-27, 2006.
  6. S. T. Peng and A. Oliner, "Guidance and Leakage Properties of a Class of Open Dielectric Waveguides: Part I-Mathematical Formulations," IEEE Trans. MTT, Vol. 29, No. 9, pp. 843-855, 1981. https://doi.org/10.1109/TMTT.1981.1130465
  7. K. C. Ho, and K. Ho, "Longitudinal Modal Transmission-Line Theory (L-MTLT) of Multilayered Periodic Waveguides," IEICE Trans. Electronics, Vol. E88-C, No. 2, pp. 270-274, 2005. https://doi.org/10.1093/ietele/E88-C.2.270
  8. K. C. Ho, "Implementation of Plasmonic Optical Polarizer using Rib-type Coupler," The J. of IWIT, Vol. 12, No. 3, pp. 217-222, 2012.
  9. J. O. Park and W. K. Jang, "Optical metrology for resonant surface acoustic wave in RF device," J. of the Korea Academia-Industrial cooperation Society, Vol. 11, pp. 3435-3440, 2010. https://doi.org/10.5762/KAIS.2010.11.9.3435
  10. J. Lim, J. Koo, J. Lee, S. M. Han, and D. Ahn, "An Efficient Design and Parameteric Study on the Transmission Lines with Substrate Integrated Artificial Dielectric," The J. of Korean Institute of Information Technology, Vol. 8, pp. 53-59, 2010.