DOI QR코드

DOI QR Code

Proteomic Analysis and Protective Effects of Outer Membrane Proteins from Salmonella Gallinarum in Chickens

Salmonella Gallinarum 세포외막단백질의 프로테옴 분석 및 닭에서의 방어능 효과

  • Sun, Jisun (College of Veterinary Medicine & Institute of Veterinary Medicine, Kangwon National University) ;
  • Cho, Youngjae (College of Veterinary Medicine & Institute of Veterinary Medicine, Kangwon National University) ;
  • Jang, Joo-Hyun (KBNP Technology Institute, KBNP Inc.) ;
  • Kang, Zheng-Wu (KBNP Technology Institute, KBNP Inc.) ;
  • Han, Jang-Hyuk (KBNP Technology Institute, KBNP Inc.) ;
  • Hahn, Tae-Wook (College of Veterinary Medicine & Institute of Veterinary Medicine, Kangwon National University)
  • 선지선 (강원대학교 수의과대학, 강원대학교 동물의학종합연구소) ;
  • 조영재 (강원대학교 수의과대학, 강원대학교 동물의학종합연구소) ;
  • 장주현 ((주)고려비엔피 기술연구소) ;
  • 강정무 ((주)고려비엔피 기술연구소) ;
  • 한장혁 ((주)고려비엔피 기술연구소) ;
  • 한태욱 (강원대학교 수의과대학, 강원대학교 동물의학종합연구소)
  • Received : 2012.10.05
  • Accepted : 2013.03.28
  • Published : 2013.04.30

Abstract

Salmonella Gallinarum (SG) is known as an important pathogen that causes fowl typhoid in chickens. To investigate SG outer-membrane proteins (OMPs) as a vaccine candidate, we used proteomic mapping and database analysis techniques with extracted OMPs. Also, extracted OMPs were evaluated in several aspects to their safety, immune response in their host and protective effects. Our research has established a proteomic map and database of immunogenic SG-OMPs used as inactive vaccine against salmonellosis in chickens. A total of 22 spots were detected by 2-dimensional gel electrophoresis and immunogenic protein analysis. Eight spots were identified by Matrix-Assisted Laser Desorption/Ionization-Time of Flight-Mass spectrometry (MALDI-TOF-MS) and peptide mass fingerprinting (PMF) and categorized into four different types of proteins. Among these proteins, OmpA is considered to be an immunogenic protein and involved in the hosts' immune system. To estimate the minimum safety dose in chickens, 35 brown layers were immunized with various concentrations of OMPs, respectively. Consequently, all chickens immunized with more than a $50{\mu}g$ dose were protected against challenges. Moreover, intramuscular administration of OMPs to chickens was more effective compared to subcutaneous administration. These results suggest that the adjuvanted SG-OMP vaccine not only induces both the humoral and cellular immune response in the host but also highly protects the hosts' exposed to virulent SG with $50{\mu}g$ OMPs extracted by our method.

Keywords

References

  1. Babu, U., Scott, M., Myers, M. J., Okamura, M., Gaines, D., Yancy, H. F., Lillehoj, H., Heckert, R. A., and Raybourne, R. B. (2003) Effects of live attenuated and killed Salmonella vaccine on T-lymphocyte mediated immunity in laying hens. Vet. Immunol. Immunopathol. 10, 39-44.
  2. Barrow, P. A., Huggins, M. B., and Lovell, M. A. (1994) Host specificity of Salmonella infection in chickens and mice is expressed in vivo primarily at the level of the reticuloendothelial system. Infect. Immun. 62, 4602-4610.
  3. Bouzoubaa, K., Nagaraja, K. V., Newman, J. A., and Pomeroy, B. S. (1987) Use of membrane proteins from Salmonella Gallinarum for prevention of fowl typhoid infection in chickens. Avian Dis. 31, 699-704. https://doi.org/10.2307/1591019
  4. Clarke, R. C. and Gyles, C. L. (1993) Salmonella. In: Pathogenesis of Bacterial Infections in Animal. Gyles, C. L., and Thoen, C. O. (eds). 2nd ed, Iowa State University Press, Ames, IA, pp. 199-153.
  5. Collins, F. M. and Campbell, S. G. (1982) Immunity to intracellular bacteria. Vet. Immunol. Immunopathol. 3, 5-66. https://doi.org/10.1016/0165-2427(82)90031-9
  6. Cordwell, S. J. (2006) Technologies for bacterial surface proteomics. Curr. Opin. Microbiol. 9, 320-329. https://doi.org/10.1016/j.mib.2006.04.008
  7. Eswarappa, S. M., Janice, J., Balasundaram, S. V., Dixit, N. M., and Chakravortty, D. (2009) Host-specificity of Salmonella enterica serovar Gallinarum: Insights from comparative genomics. Infect. Genet. Evol. 9, 468-473. https://doi.org/10.1016/j.meegid.2009.01.004
  8. Ewing, W. H. (1986) Edwards and Ewing's Identification of Enterobacteriaceae. 4th ed, Elsevier Science Publishing, NY, pp. 247-318.
  9. Guard-Petter, J. (2001) The chicken, the egg and Salmonella Enteritidis. Environ. Microbiol. 3, 421-430. https://doi.org/10.1046/j.1462-2920.2001.00213.x
  10. Lee, H. S., Lim, S. K., Cho, Y. S., Joo, Y. S., Kim, J.H., and Kim, J. M. (2007) Protective effects of mix-crude outer membrane protein Salmonella vaccine against salmonellosis in chickens and pigs. Korean J. Vet. Res. 42, 147-155.
  11. Lee, J. S., Jung, I. D., Lee, C. M., Park, J. W., Chun, S. H., Jeong, S. K., Ha, T. K., Shin, Y. K., Kim, D. J., and Park, Y. M. (2010) Outer membrane protein a of Salmonella enterica serovar Typhimurium activates dendritic cells and enhances Th1 polarization. BMC Microbiol. 15, 263-270.
  12. Lillehoj, H. S. (1991) Cell-mediated immunity in parasitic and bacterial diseases. In: Avian cellular immunology. Sharma, J. M. (ed) CRC Press, Boca Raton, FL, pp. 155-181.
  13. Meenakshi, M., Bakshi, C. S., Butchaiah, G., Bansal, M. P., Siddiqui, M. Z., Singh, V. P. (1999) Adjuvanted outer membrane protein vaccine protects poultry against infection with Salmonella Enteritidis. Vet. Res. Commun. 23, 81-90. https://doi.org/10.1023/A:1006250301254
  14. Popoff, M. Y., Bockemuhl, J., and Gheesling, L. L. (2004) Supplement 2002 (no. 46) to the Kauffmann-White scheme. Res. Microbiol. 155, 568-570. https://doi.org/10.1016/j.resmic.2004.04.005
  15. Rabilloud, T., Kieffer, S., Procaccio, V., Louwagie, M., Courchesne, P. L., Patterson, S. D., Martinez, P., Garin, J., and Lunardi, J. (1998) Two-dimensional electrophoresis of human placental mitochondria and protein identification by mass spectrometry: Toward a human mitochondrial proteome. Electrophoresis 19, 1006-1014. https://doi.org/10.1002/elps.1150190616
  16. Seo, Y. S., Lee, S. H., Shin, E. K., Kim, S. J., Jung, R., Hahn, T. W. (2006) Pulsed-field gel electrophoresis genotyping of Salmonella Gallinarum and comparison with random amplified polymorphic DNA. Vet. Microbiol. 115, 349-357. https://doi.org/10.1016/j.vetmic.2006.02.019
  17. Silva, E. N., Snoeyenbos, G. H., Weinack, O. M., and Smyser, C. F. (1981) Studies on the use of 9R strain of Salmonella Gallinarum as a vaccine in chickens. Avian Dis. 25, 38-52. https://doi.org/10.2307/1589825
  18. Smith, I. M. (1969) Protection against experimental fowl typhoid by vaccination with strain 9R reconstituted from the freeze-dried state. J. Comp. Pathol. 79, 197-205. https://doi.org/10.1016/0021-9975(69)90006-1
  19. Valiente Moro, C., De Luna, C. J., Tod, A., Guy, J. H., Sparagano, O. A., and Zenner, L. (2009) The poultry red mite (Dermanyssus gallinae): A potential vector of pathogenic agents. Exp. Appl. Acarol. 48, 93-104. https://doi.org/10.1007/s10493-009-9248-0
  20. Wigley, P., Hulme, S., Powers, C., Beal, R., Smith, A., and Barrow, P. (2005) Oral infection with the Salmonella enterica serovar Gallinarum 9R attenuated live vaccine as a model to characterize immunity to fowl typhoid in the chicken. BMC Vet. Res. 12, 2-7.
  21. Wu, M., Stockley, P. G., and Martin, W. J. 2nd. (2002) An improved western blotting technique effectively reduces background. Electrophoresis 23, 2373-2376. https://doi.org/10.1002/1522-2683(200208)23:15<2373::AID-ELPS2373>3.0.CO;2-W