DOI QR코드

DOI QR Code

Anti-oxidative and Neuroprotective Activities of Pig Skin Gelatin Hydrolysates

돈피젤라틴 효소분해물의 항산화 활성 및 신경세포보호효과

  • Kim, Dong Wook (Department of Food Science and Biotechnology, Sungkyunkwan University) ;
  • Park, Kimoon (Department of Food Science and Biotechnology, Sungkyunkwan University) ;
  • Ha, Goeun (National Institute of Animal Science, RDA) ;
  • Jung, Ju Ri (Department of Food Science and Biotechnology, Sungkyunkwan University) ;
  • Chang, Ounki (National Institute of Animal Science, RDA) ;
  • Ham, Jun-Sang (National Institute of Animal Science, RDA) ;
  • Jeong, Seok-Geun (National Institute of Animal Science, RDA) ;
  • Park, Beom-Young (National Institute of Animal Science, RDA) ;
  • Song, Jin (National Academy of Agricultural Science, RDA) ;
  • Jang, Aera (Department of Animal Products and Food Science, Kangwon National University)
  • 김동욱 (성균관대학교 식품생명공학과) ;
  • 박기문 (성균관대학교 식품생명공학과) ;
  • 하고은 (농촌진흥청 국립축산과학원) ;
  • 정주리 (성균관대학교 식품생명공학과) ;
  • 장운기 (농촌진흥청 국립축산과학원) ;
  • 함준상 (농촌진흥청 국립축산과학원) ;
  • 정석근 (농촌진흥청 국립축산과학원) ;
  • 박범영 (농촌진흥청 국립축산과학원) ;
  • 송진 (농촌진흥청 국립농업과학원) ;
  • 장애라 (강원대학교 동물식품응용과학과)
  • Received : 2013.01.21
  • Accepted : 2013.03.20
  • Published : 2013.04.30

Abstract

This study was conducted to determine the antioxidative and neuroprotective effect of pig skin extracts (PS) and pig skin gelatin hydrolysates (LPS) using a human neuroblastoma cell line (SH-SY5Y). The extraction yield of PS was 3 fold higher than that of LPS. The protein content of PS was about 10 fold higher than that of LPS (p<0.05). Also LPS increased antioxidative activity dose dependently, and the activity was significantly higher than PS at all concentration (p<0.05). DPPH radical scavenging activity of LPS at 50 mg/mL was 92.97%, which was similar to $1{\mu}M$ vitamin C as a positive control. ABTS radical scavenging activity of LPS (20 mg/mL) was 89.83% and oxygen radical absorbance capacity of LPS at 1 mg/mL was $141.39{\mu}M$ Trolox Equvalent/g. No significant change of human neuroblastoma cells was determined by MTT test. Cell death by oxidative stress induced by $H_2O_2$ and amyloid beta 1-42 ($A{\beta}_{1-42}$) was protected by LPS rather than PS. Acetylcholine esterase was significantly inhibited, by up to 33.62% by LPS at 10 mg/mL. Therefore, these results suggest that pig skin gelatin hydrolysates below 3 kDa have potential to be used as anti-oxidative and neuroprotective functional additives in the food industry, while further animal test should be determined in the future.

각 돈피추출물의 수율과 단백질함량은 고분자 PS 처리구에서 높은 함량을 나타내었으며, 특히 단백질 함량은 저분자 LPS 처리구에 비해 유의적으로 높았고, 약 10배 정도의 높은 단백질 함량을 나타내었다(p<0.05). 항산화활성 측정결과 처리 농도가 증가할수록 높은 항산화 활성을 나타내었으며(p<0.05), 특히 고분자 PS 처리구에 비해 저분자 LPS 처리구에서 유의적으로 높은 효과를 나타내었다. ORAC 활성은 LPS 농도 1 mg/mL일 때, $141.39{\mu}M$ TE/g의 높은 활성을 나타내었다. 각 돈피추출물을 신경모세포종 SH-SY5Y 세포에 고농도로 처리한 결과 세포에 독성을 나타내지 않았다. 신경세포에 과산화수소를 처리하여 유발시킨 산화적 스트레스에 대한 PS와 LPS의 신경세포 보호효과를 확인한 결과, 모든 처리구에서 농도 의존적으로 세포 보호효과를 나타내었다. 특히 저분자인 LPS 처리구 농도 $100{\mu}g/mL$일 때, 86.45%의 세포생존율을 보였으며 $H_2O_2$ 대비 29.98%의 신경세포보호효과를 나타내었다. 독성 단백질인 $A{\beta}_{1-42}$를 처리하여 신경세포 보호효과를 확인한 결과, 고분자 PS 처리구보다는 저분자인 LPS 처리구 농도 $100{\mu}g/mL$일 때, 82.01%의 생존율을 보였으며 $A{\beta}_{1-42}$ 대비 14.38%의 신경세포보호효과를 나타내었다(p<0.05). AChE 저해효과를 확인해 본 결과, 고분자 PS 처리구에서는 거의 효과가 나타나지 않았으나, 저분자인 LPS 처리구에서는 농도 의존적으로 증가하는 경향을 나타내었으며, 농도 100 mg/mL일 때 33.62%의 높은 저해 효과를 나타내었다. 따라서 본 연구결과 돈피에서 분리한 3 kDa 이하의 저분자 효소분해물인 LPS는 높은 항산화 활성을 나타내었고, $H_2O_2$$A{\beta}_{1-42}$로 유발시킨 산화스트레스에 대한 신경세포 보호효과 및 AChE 저해 효과를 나타내어 향후 항산화 활성 및 신경세포보호를 위한 축산식품 소재로 이용 가능성이 있을 것으로 판단된다.

Keywords

References

  1. Agusti, K. T. (1996) Therapeutic values of onion (Allium cepa L.) and garlic (Allium sativum L.). Indian J. Exp. Biol. 34, 634-640.
  2. Ames, B. N., Shigenaga, M. K., and Hagen, T. M. (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci. USA. 90, 7915-7922. https://doi.org/10.1073/pnas.90.17.7915
  3. Barril, X., Orozco, M., and Luque, F. J. (2001) Toward improved acetylcholinesterase inhibitors: a structural and computational approach. Mini. Rev. Med. Chem. 1, 255-266. https://doi.org/10.2174/1389557013406828
  4. Blois, M. S. (1958) Antioxidant determination by the use of a stable free radical. Nature 181, 1199-1200. https://doi.org/10.1038/1811199a0
  5. Carmichael, J., Mitchell, J. B., DeGraff, W. G., Gamson, J., Gazdar, A. F., Johnson, B. E., Glatstein, E., and Minna, J. D. (1988) Chemosensitivity testing of human lung cancer cell lines using the MTT assay. Br. J. Cancer. 57(6), 540-547.
  6. Chae, H. S., Yoo, Y. M., Ahn, C. N., Cho, S. H., Park, B. Y., Lee J. M., Kim Y. K., Yun S. G., and Choi, Y. I. (2003) Chemical and sensory characteristics of boiled soup extracted from crossbred Ogol chicken as affected by the level of flavourzyme. Korean J. Poult. Sci. 30, 11-16.
  7. Davis, K. L., Thal, L. J., Gamzu, E. R., Davis, C. S., Woolson, R. F., and Gracon, S. I. (1992) A double-blind, placebo-controlled multicenter study of tacrine for Alzhei-mer's disease. N. Engl. J. Med. 327, 1253-1259. https://doi.org/10.1056/NEJM199210293271801
  8. Dnize, F. D. and Rita, L. (1986) Rapid colorimetric assay for cell growth and survival: Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Methods 22, 271-277.
  9. Ellman, G. L., Countney, K. D., Andress, V., and Featherstone, R. M. (1961) A new and rapid colorimetric determination acetylcholine esterase activity. Biochem Pharmacol. 7, 88-95. https://doi.org/10.1016/0006-2952(61)90145-9
  10. Foegeding, E., Lanier, T. C., and Hultin, H. O. (1996) Characteristics of edible muscle tissue. In: Food Chemistry. Fennema, O.R. (ed) 3rd ed, Marcel Dekker, Inc., NY, pp. 879-942.
  11. Gilsenan, P. M. and Ross-Murphy, S. B. (2000) Rheological characterization of gelatins from mammalian and marine sources. Food Hydrocolloid. 14, 191-195. https://doi.org/10.1016/S0268-005X(99)00050-8
  12. Gomez-Guillen, M. C., Gimenz, B., Lopez-Caballeo, M. E., and Montero, M. P. (2011) Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocolloid. 25, 1813-1827. https://doi.org/10.1016/j.foodhyd.2011.02.007
  13. Gong Y., Chang L., Viola K. L., Lacor P. N., Lambert M. P., Finch C. E., Krafft G. A., and Klein W. L. (2003) Alzheimer's disease-affected brain: presence of oligomeric A-beta ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc. Natl. Acad. Sci USA. 100, 10417. https://doi.org/10.1073/pnas.1834302100
  14. Kim, J. W., Kim, D. K., Kim, M. J., and Kim, S. D. (2010) Extraction and bleaching of acid-and pepsin-soluble collagens from shark skin and muscle. Korean J. Food Pres. 17, 91-99.
  15. Kwak, J. H., Choi, G. N., Park, J. H., Kim, J. H., Jeong, H. R., Jeong, C. H., and Heo, H. J. (2010) Antioxidant and neuronal cell protective effect of purple sweet potato extract. J. Agric. Life Sci. 44, 57-66.
  16. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685. https://doi.org/10.1038/227680a0
  17. Lee, D. Y., Yun, J. Y., Kim, J. I., Kim, D. H., Han, I.S., and Lee, W. B. (2007) Protective effect of fibrion BF-7 on neuronal cell death in Alzheimer model using amyloid ${\beta}$ peptide. Kor. J. Anat. 40, 57-67.
  18. Lee, K. B., Shin, Y. K., and Baick, S. C. (2012) Effect of sodium caseinate hydrolysates on angiotensin-I converting enzyme inhibition activity. Korean J. Food Sci. An. 32, 652-658. https://doi.org/10.5851/kosfa.2012.32.5.652
  19. Li, H., Liu, B. L., Gao, L. Z., and Chen, H. L. (2004) Studieson bullfrogskin collagen. Food Chem. 84, 65-69. https://doi.org/10.1016/S0308-8146(03)00167-5
  20. Lu, P., Mamiya, T., Lu, L. L., Mouri, A., Zou, L., Nagai, T., Hiramatsu, M., Ikejima, T., and Nabeshima, N. (2009) Silibinin prevents amyloid beta peptide-induced memory impairment and oxidative stress in mice. Br. J. Pharmacol. 157, 1270-1277. https://doi.org/10.1111/j.1476-5381.2009.00295.x
  21. Maeda, M., Tani, S., Sano, A., and Fujioka, K. (1999) Microstructure Microstructure and release characteristics of the mini pellet, a collagen- based drug delivery system for controlled release of protein drugs. J. Con. Release 62, 313-324. https://doi.org/10.1016/S0168-3659(99)00156-X
  22. Ministry of Health & Welfare (2012). 2nd General Plan for National Dementia (2013-2015). p. 1.
  23. Nam, H. S. (1999) Market tendency and development of physiological active peptide. Kor. J. Food Ind. Nutr. 4, 17-19.
  24. Prior, R. L., Wu, X., and Schaich, K. (2005) Standardized method for determination of antioxidant capacity and phenolics in foods and biological and food samples. J. Agric. Food Chem. 53, 4290-4302. https://doi.org/10.1021/jf0502698
  25. Que, F., Mao, L., Zhu, C., and Xie, G. (2006) Antioxidant properties of Chinese yellow wine, its concentrate and volatiles. LWT-Food Sci. Technol. 39, 111-117. https://doi.org/10.1016/j.lwt.2005.01.001
  26. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. (1999) Antioxidnt activity applying and improved ABTS radical action decolorization assay. Free Radical Biol Med. 26, 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  27. Rogers, S. L., Farlow, M. R., Doody, R. S., Mohs, R., and Friedhoff, L. T. (1998) A 24-week, double-blind, placebocontrolled trial of donepezil in patients with Alzheimer's disease. Neurology 50, 136-145. https://doi.org/10.1212/WNL.50.1.136
  28. Rosler, M., Anand, R., Cicin-Sain, A., Gauthier, S., Agid, Y., and Dal-Bianco, P. (1999) Efficacy and safety of rivastigmine in patients with Alzheimer's disease. International randomized controlled trial. BMJ. 318, 633-638.
  29. Sadowska, M., Kolodziejska, I., and Niecikowska, C. (2003) Isolation of collagen from the skins of Baltic cod (Gadus morhua). Food Chem. 81, 257-262. https://doi.org/10.1016/S0308-8146(02)00420-X
  30. Tariot, P. N., Solomon, P. R., Morris, J. C., Kershaw, P., Lilienfeld, S., and Ding, C. (2000) A 5-month, randomized, placebo- controlled trial of galantamine in AD. The Galantamine USA-10 Study Group. Neurology 54, 2269-2276. https://doi.org/10.1212/WNL.54.12.2269
  31. Varadarajan, S., Yatin, S., Aksenova, M., and Butterfiled, D. A. (2000) Review: Alzheimer's amyloid ${\beta}$-peptide-associated free radical oxidative stress and neurotoxicity. J. Struct. Biol. 130, 184-208. https://doi.org/10.1006/jsbi.2000.4274
  32. Wallace, D. C. (1992) Mitochondrial genetics: A paradigm for aging and degenerative disease? Science 256, 628-632. https://doi.org/10.1126/science.1533953

Cited by

  1. Quality Characteristics of Pork Skin Collagen with Enzyme Treatments vol.29, pp.5, 2016, https://doi.org/10.9799/ksfan.2016.29.5.760
  2. Antioxidation Effect of Leg Bone Extracts and Enzyme Hydrolysates from Jeju Crossbred Horses (Jeju Native Horse×Thoroughbred) vol.23, pp.9, 2013, https://doi.org/10.5352/JLS.2013.23.9.1147
  3. Bioactivity of bovine lung hydrolysates prepared using papain, pepsin, and Alcalase 2017, https://doi.org/10.1111/jfbc.12406
  4. Revalorisation of bovine collagen as a potential precursor of angiotensin I-converting enzyme (ACE) inhibitory peptides based on in silico and in vitro protein digestions vol.24, 2016, https://doi.org/10.1016/j.jff.2016.03.026
  5. Anti-oxidative Activity and the Protective Effect of Donkey's Bone and Skin Extracts on SK-N-SH Cells vol.23, pp.8, 2013, https://doi.org/10.5352/JLS.2013.23.8.1019
  6. Study on Physicochemical Properties of Emulsion-Type Sausage Added with Pork Skin Gelatin vol.45, pp.2, 2016, https://doi.org/10.3746/jkfn.2016.45.2.209
  7. Comparison of Antioxidant Activities of Hydrolysates of Domestic and Imported Skim Milk Powders Treated with Papain vol.35, pp.3, 2015, https://doi.org/10.5851/kosfa.2015.35.3.360
  8. Development of Tteokgalbi Added with Pig Skin Gelatine Powder vol.45, pp.8, 2016, https://doi.org/10.3746/jkfn.2016.45.8.1147
  9. Antioxidant Activity of Porcine Skin Gelatin Hydrolyzed by Pepsin and Pancreatin vol.33, pp.4, 2013, https://doi.org/10.5851/kosfa.2013.33.4.493
  10. Pig Skin Gelatin Hydrolysates Attenuate Acetylcholine Esterase Activity and Scopolamine-induced Impairment of Memory and Learning Ability of Mice vol.40, pp.2, 2013, https://doi.org/10.5851/kosfa.2020.e3
  11. 레몬 머틀 추출물을 첨가한 젤리의 품질 특성 vol.33, pp.2, 2013, https://doi.org/10.9799/ksfan.2020.33.2.131
  12. Effects of Gelatin Hydrolysates Addition on Technological Properties and Lipid Oxidation of Cooked Sausage vol.40, pp.6, 2013, https://doi.org/10.5851/kosfa.2020.e74
  13. Developments for Collagen Hydrolysate in Biological, Biochemical, and Biomedical Domains: A Comprehensive Review vol.14, pp.11, 2013, https://doi.org/10.3390/ma14112806
  14. Effects of food-derived bioactive peptides on cognitive deficits and memory decline in neurodegenerative diseases: A review vol.116, pp.None, 2013, https://doi.org/10.1016/j.tifs.2021.04.056