DOI QR코드

DOI QR Code

An Evaluation of the Influence of Boundary Conditions from GEOS-Chem on CMAQ Simulations over East Asia

동아시아지역에서 GEOS-Chem에 의한 경계조건이 CMAQ 모사 결과에 미치는 영향에 대한 평가

  • Choi, Dae-Ryun (Department of Environmental & Energy Engineering, Anyang University) ;
  • Koo, Youn-Seo (Department of Environmental & Energy Engineering, Anyang University)
  • 최대련 (안양대학교 환경에너지공학과) ;
  • 구윤서 (안양대학교 환경에너지공학과)
  • Received : 2013.01.03
  • Accepted : 2013.03.14
  • Published : 2013.04.30

Abstract

The present work is an attempt to improve the performance of a regional air quality model by means of liking it with a global chemistry transport model. The global chemical transport model of GEOS-Chem is used to provide BC (Boundary Condition)s which reflect temporal and spatial variations at boundaries of regional chemical transport model of CMAQ over East Asia. First, GEOS-Chem outputs are evaluated by comparing predicted concentrations with observed monthly data of gas phase species and secondary inorganic aerosols from EANET (Acid Deposition Monitoring Network in East Asia) sites. The results show that predicted PM10 concentrations are in good agreement with the observations. This implies that GEOS-Chem outputs could be used to provide BCs to CMAQ. Simulated daily and monthly mean PM10 concentrations of CMAQ with the linkage of GEOS-Chem's BCs and constant BCs are then evaluated by comparing predicted concentrations with observations at API (Air Pollution Index) sites in China as well as EANET sites in Korea. CMAQ with the GEOS-Chem outputs improves model simulation in depicting observed PM10 concentrations comparing with those with constant BCs. It is also found that influence of aerosol species are largely dependent on the BCs over East Asia and Korea. Mean biases between simulated versus observed daily and monthly mean concentrations of PM10 with the GEOS-chem were improved by 1~8 ${\mu}g/m^3$ in China region, 3.26 ${\mu}g/m^3$ in Korea.

Keywords

References

  1. Alexander, B., R.J. Park, D.J. Jacob, Q.B. Li, R.M. Yantosca, J. Savarino, C.C.W. Lee, and M.H. Themens (2005) Sulfate formation in sea-salt aerosol: Constraints from oxygen isotopes, J. Geophys. Res., 110, D10307. https://doi.org/10.1029/2004JD005659
  2. Appel, W., A. Gilliland, G. Sarwar, and R.C. Gilliam (2007) Evaluation of the community multiscale air quality (CMAQ) model version 4.5: sensitivities impacting model performace: part I - ozone, Atmos. Environ., 41, 9603-9613. https://doi.org/10.1016/j.atmosenv.2007.08.044
  3. Barkley, M. (2010) Description of MEGAN biogenic VOC emissions in GEOS-Chem.
  4. Bey, I., D.J. Jacob, R.M. Yantosca, J.A. Logan, B. Field, A.M. Fiore, Q. Li, H. Liu, L.J. Mickley, and M. Schultz (2001) Global modeling of tropospheric chemistry with assimilated meteorology: model description and evaluation, J. Geophys. Res., 106, 23, 073-23, 096.
  5. Bond, T.C., D.G. Streets, K.F. Yarber, S.M. Nelson, J.H. Woo, and Z. Klimont (2004) A technology-based global inventory of black and organic carbon emissions from combustion, J. Geophys. Res., 109, D14203. https://doi.org/10.1029/2003JD003697
  6. Borge, R., V. Alexandrov, J.J. del Vas, J. Lumbreras, and M.E. Rodríguez (2008) A comprehensive sensitivity analysis of the WRF model for air quality applications over the Iberian Peninsula, Atmos. Environ., 42, 8560-8574. https://doi.org/10.1016/j.atmosenv.2008.08.032
  7. Borge, R., J. Lopez, J. Lumbreras, A. Narros, and E. Rodriguez (2010) Influence of boundary conditions on CMAQ simulations over the Iberian Peninsula, Atmos. Environ., 44, 2681-2695. https://doi.org/10.1016/j.atmosenv.2010.04.044
  8. Chung, S.H. and J.H. Seinfeld (2002) Global distribution and climate forcing of carbonaceous aerosols, J. Geophys. Res., 107(D19), 4407. https://doi.org/10.1029/2001JD001397
  9. De Leeuw, G., F.P. Neele, M. Hill, M.H. Smith, and E. Vignati (2000) Production of sea spray aerosol in the surf zone, J. Geophys. Res., 105(D24), 29397-29409. https://doi.org/10.1029/2000JD900549
  10. Fairlie, T.D., D.J. Jacob, and R.J. Park (2007) The impact of transpacific transport of mineral dust in the United States, Atmos. Environ., 41, 1251-1266. https://doi.org/10.1016/j.atmosenv.2006.09.048
  11. Fairlie, T.D., D.J. Jacob, J.E. Dibb, B. Alexander, M.A. Avery, A. van Donkelaar, and L. Zhang (2010) Impact of mineral dust on nitrate, sulfate, and ozone in transpacific Asian Pollution plumes, Atmos. Chem. Phys., 10, 3999-4012. https://doi.org/10.5194/acp-10-3999-2010
  12. Fountoukis, C. and A. Nenes (2007) ISORROPIA II: A computationally efficient thermodynamic equilibrium model for $K^+-Ca^{2+}-Mg^{2+}-NH_4^+-Na^+-SO_4^2-NO_3^--Cl^--H_2O$ aerosols, Atmos. Chem. Phys., 7(17), 4639-4659. https://doi.org/10.5194/acp-7-4639-2007
  13. Fu, J.S., C.J. Jang, D.G. Streets, Z. Li, R. Kwok, R.J. Park, and Z. Han (2008) MICS-Asia II: Modeling gaseous pollutants and evaluating an advanced modeling system over East Asia, Atms. Environ., 42, 3571-3583. https://doi.org/10.1016/j.atmosenv.2007.07.058
  14. Gong, S.L. (2003) A parameterization of sea-salt aerosol source function for sub- and super-micron particles, Global Biogeochemical Cycles, 17(4), 1097-1103.
  15. Guenther, A., T. Karl, P. Harley, C. Wiedinmyer, P.I. Palmer, and C. Geron (2006) Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6, 3181-3210. https://doi.org/10.5194/acp-6-3181-2006
  16. Henze, D.K. and J.H. Seinfeld (2006) Global secondary organic aerosol from isoprene oxidation, Geophys. Res. Lett., 33, L09812. https://doi.org/10.1029/2006GL025976
  17. Henze, D.K., J.H. Seinfeld, N.L. Ng, J.H. Kroll, T.M. Fu, D.J. Jacob, and C.L. Heald (2008) Global modeling of secondary organic aerosol formation from aromatic hydrocarbons: high- vs. Low-yield pathways, Atmospheric Chem. Phys., 8, 2405-2420. https://doi.org/10.5194/acp-8-2405-2008
  18. Hong, S., J. Lee, J. Choi, K. Moon, H. Lee, D. Hong, S. Lee, and C. Song (2012) The Effect of the Chemical Lateral Boundary Conditions on CMAQ simulations of Tropospheric Ozone for East Asa, J. KOSAE, 28(5), 581-594. https://doi.org/10.5572/KOSAE.2012.28.5.581
  19. In, H.J., D.W. Byun, R.J. Park, N.K. Moon, S. Kim, and S. Zhong (2007) Impact of trans-boundary transport of carbonaceous aerosols on the regional air quality in the Unite States: A case study of the South American wildland fire of May 1988, J. Geophys. Res., 112, D07201. https://doi.org/10.1029/2006JD007544
  20. Jang, Y.G. and J. Kim (2011) Developing the PM emission inventories in Korea, Air Quality Modeling in Asia 2011, 24-25.
  21. Kuhns, H., M. Green, and V. Etyemezian (2003) Big bend regional aerosol and visibility observational (BRAVO) study emissions inventory.
  22. Lam, Y.F. and J.S. Fu (2010) A novel downscaling technique for the linkage of global and regional air quality modeling, Atmos. Chem. Phys., 10, 4013-4031. https://doi.org/10.5194/acp-10-4013-2010
  23. Lee, D., J. Wang, X. Jiang, Y. Lee, and K. Jang (2012) Comparison between atmospheric chemistry model and observations utilizing the RAQMS-CMAQ linkage, Atmos. Environ., 61, 85-93. https://doi.org/10.1016/j.atmosenv.2012.06.083
  24. Lee, D., Y. Lee, K. Jang, C. Yoo, K. Kang, J. Lee, S. Jung, J. Park, S. Lee, J. Han, J. Hong, and S. Lee (2011) Korean National Emissions Inventory System and 2007 Air Pllutant Emissions, Asian Journal of Atmospheric Environment, 5(4), 278-291. https://doi.org/10.5572/ajae.2011.5.4.278
  25. Liu, H., D.J. Jacob, I. Bey, and R.M. Yantosca (2001) Constraints from 210Pb and 7Be on wet deposition and transport in a global three-dimensional chemical tracer model driven by assimilated meteorological fields, J. Geophys. Res., 106(D11), 12,109-12,128. https://doi.org/10.1029/2000JD900839
  26. Oliver, J.G.J. and J.J.M. Berdowski (2001) Global emissions sources and sinks. In: Berdowski, J., et al. (Eds.), The Climate System. A.A, Balkema Publishers/ Swets & Zeitlinger Publishers, Lisse, the Netherlands, 33-78.
  27. Park, R.J., D.J. Jacob, M. Chin, and R.V. Martin (2003) Sources of carbonaceous aerosols over the United States and implications for natural visibility, J. Geophys. Res., 108(D12), 4355. https://doi.org/10.1029/2002JD003190
  28. Park, R.J., D.J. Jacob, B.D. Field, R.M. Yantosca, and M. Chin (2004) Natural and transboundary pollution influences on sulfate-nitrate-ammonium aerosols in the Unitied States: implications for policy, Geophys. Res., 109, D15204. https://doi.org/10.1029/2003JD004473
  29. Park, R.J., D.J. Jacob, N. Kumar, and R.M. Yantosca (2006) Regional visibility statistics in the United States:natural and transboundary pollution influences, and implications for the Regional Haze Rule, Atmos. Environ., 40(28), 5405-5423. https://doi.org/10.1016/j.atmosenv.2006.04.059
  30. Park, R.J., J.I. Jeong, and D. Youn (2009) A study of the effects of Siberian wildfires on ozone concentrations over East Asia in Spring 2003, J. Korean of Korean Met. Soc., 19(3), 227-235.
  31. Samaali, M., M.D. Moran, V.S. Bouchet, R. Pavlovic, S. Cousineau, and M. Sassi (2009) On the influence of chemical initial and boundary conditions on annual regional air quality model simulations for North America, Atmos. Environ., 43, 4873-4885. https://doi.org/10.1016/j.atmosenv.2009.07.019
  32. Skamarock, W.C. and J.B. Klemp (2008) A time-split non-hydrostatic atmospheric model for weather research and forecasting applications, J. Computational Physics, 227, 3465-3485. https://doi.org/10.1016/j.jcp.2007.01.037
  33. Tombrou, M., E. Bossioli, A.P. Protonotariou, H. Flocas, C. Giannakopoulos, and A. Dandou (2009) Coupling GEOS-CHEM with a reional air pollution model for Greece, Atmos. Environ., 43, 4793-4804. https://doi.org/10.1016/j.atmosenv.2009.04.003
  34. US Environmental Protection Agency (2007) Guidance on the Use of Models and Other Analyses for Demonstrating Attainment of Air Quality Goals for Ozone, PM2.5 and Regional Haze, EPA454-B-07-002.
  35. US Environmental Protection Agency (2010) Technical Support Document: Preparation of Emissions Inventories for the Version 4, 2005-based Platform, 73 pp.
  36. van der Werf, G., J.T. Randerson, L. Giglio, G.J. Collatz, M. Mu, P.S. Kasibhatla, D.C. Morton, R.S. DeFries, Y. Jin, and T.T. van Leeuwen (2010) Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009), Atmos. Chem. Phys. Discuss., 10, 16153-16230. https://doi.org/10.5194/acpd-10-16153-2010
  37. Vestreng, V., K. Mareckova, S. Kakareka, A. Malchykhina, and T. Kukharchyk (2007) Inventory Review 2007: Emission Data reported to LRTAP Convention and NEC Directive.
  38. Wang, Y., D.J. Jacob, and J.A. Logan (1998) Global simulation of tropospheric $O_3-NO_x$-hydrocarbon chemistry, 1. Model formulation, J. Geophys. Res., 103(D9), 10,713-10,726. https://doi.org/10.1029/98JD00158
  39. Yarwood, G., S. Rao, M. Yocke, and G. Whitten (2005) Updates to the carbon bond chemical mechanism: CB05. Final report to the U.S. EPA, RT-0400675.
  40. Zhang, Q., D.G. Streets, G.R. Carmichael, K.B. He, H. Huo, A. Kannari, Z. Klimont, I.S. Park, S. Reddys, J.S. Fu, D. Chem, L. Duan, Y. Lei, L.T. Wang, and Z.L. Yao (2009) Asian emission in 2006 for the NASA INTEX-B mission, Atmos. Chem. Phys., 9, 5131-5153. https://doi.org/10.5194/acp-9-5131-2009
  41. Zender, C.S., H. Bian, and D. Newman (2003a) Mineral dust entrainment and deposition (DEAD) model: description and 1990s dust climatology, J. Geophys. Res., 108(D17), 4416. https://doi.org/10.1029/2002JD002775
  42. Zender, C.S., D. Newman, and O. Torres, (2003b) Spatial heterogeneity in aeolian erodibility: uniform, topographic, geomorphic, and hydrologic hypotheses, J. Geophys. Res., 108(D14), 4543. https://doi.org/10.1029/2002JD003039